Меню

Временные диаграммы выпрямленного напряжения тока

Выпрямитель переменного тока

Выпрямитель электрического тока это устройство, преобразующее переменный ток в постоянный. Он обычно реализуется на полупроводниковых диодах. Простейший выпрямитель тока содержит трансформатор, выпрямительный диод и нагрузку. Его принципиальная схема приведена на рисунке 1.

Рисунок 1. Схема простейшего выпрямителя переменного тока

Приведенная на рисунке 1 схема построена по однотактной схеме выпрямления однофазного источника переменного напряжения. В этой схеме трансформатор позволяет преобразовать переменное напряжение до необходимого на выходе значения. Полупроводниковый диод пропускает ток только в одном направлении, и именно этот ток подается в нагрузку.

Выпрямленное напряжение Ud содержит полезную составляющую (постоянное напряжение U) и ряд гармоник частоты входного тока fсети, в том числе и основную гармонику с частотой входного напряжения. Амплитуды гармоник тока на выходе однотактного выпрямителя напряжения можно определить по коэффициентам Берга для угла отсечки, равного 90°. В идеальном случае гармонический спектр продолжается до бесконечности. В реальных устройствах он ограничивается фильтрующим действием паразитных элементов схемы.

Как уже обсуждалось в статье «Преобразование переменного тока в постоянный», в однотактных схемах постоянный ток нагрузки протекает через трансформатор, поэтому его сердечник подмагничивается. Понять процессы, происходящие в однотактном выпрямителе, помогут временные диаграммы, приведенные на рисунке 2.

Рисунок 2. Временные диаграммы токов и напряжений однополупериодного выпрямителя переменного тока

Как уже определялось при обсуждении схемы замещения трансформатора, ток в первичной обмотке трансформатора равен сумме тока его холостого хода (ixx) и переменной составляющей тока нагрузки, пересчитанной в первичную цепь (i2’). Форма тока в первичной обмотке (i1) трансформатора, входящего в состав однополупериодного выпрямителя, сильно отличается от синусоидальной. По этой причине подобная схема применяется достаточно редко.

В общем случае, при работе от многофазной сети переменного тока, у трансформатора есть m1 первичных обмоток, подключенных к различным фазам сети, и р фаз во вторичной цепи, которое называют пульсностью. Обычно . Пульсность схемы определяется произведением

С точки зрения выражения (1) однопериодный выпрямитель тока, принципиальная схема которого приведена на рисунке 1, обладает пульсностью

В качестве примера выпрямителя тока с количеством фаз напряжения на выходе больше, чем на входе, можно привести двухфазный однотактный выпрямитель тока. Его принципиальная схема приведена на рисунке 3.

Рисунок 3. Принципиальная схема двухфазного однотактного выпрямителя тока

В данном случае используются две вторичных обмотки, включенных противофазно (обмотка с отводом посередине). В течение одного периода сети через каждую из них протекает один импульс тока i2’ и i2«. Благодаря диодам эти токи протекают через нагрузку в одном направлении, а через вторичные обмотки из-за противофазного включения — в разных направлениях. В результате форма тока в первичной обмотке не искажается и в сердечнике трансформатора не происходит подмагничивание постоянным током.

При этом с точки зрения выражения (1) в данной схеме пульсность . Уменьшение времени, когда на нагрузке отсутствует входное напряжение, позволяет значительно уменьшить габариты сглаживающего фильтра. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока приведены на рисунке 4.

Рисунок 4. Временные диаграммы токов и напряжений двухфазного однотактного выпрямителя тока

При расчете сглаживающего фильтра очень важно знать частоту первой гармоники пульсаций. В схеме двухфазного однотактного выпрямителя она вдвое выше частоты сети () и может быть определена через пульсность

В качестве еще одного примера схемы выпрямления переменного тока рассмотрим двухтактный выпрямитель. Его еще называют однофазным диодным мостом. Принципиальная схема двухтактного выпрямителя переменного напряжения приведена на рисунке 5.

Рисунок 5. Принципиальная схема двухтактного выпрямителя переменного тока

Временные диаграммы токов и напряжений этого устройства совпадают с временными диаграммами двухфазного однотактного выпрямителя тока, приведенными на рисунке 4. В выпрямителе переменного тока на диодном мосте присутствует только одна вторичная обмотка, поэтому . В то же самое время количество импульсов тока за период равно 2, поэтому пульсность в данной схеме равна . По этой формуле полное название устройства, приведенного на рисунке 5, это двухтактный однофазный выпрямитель тока.

Частота первой гармоники пульсаций в данном случае, как и для двухфазного однотактного выпрямителя вдвое выше частоты сети. Тем не менее, области применения этих типов выпрямителей тока несколько отличаются. Для низковольтных устройств лучше подходит схема, показанная на рисунке 3, так как в ней падение напряжения происходит только на одном диоде. В ряде случаев это настолько важно, что можно пренебречь возрастанием стоимости трансформатора. В преобразователях AC/DC с относительно высоким выходным напряжением лучше применять схему, приведенную на рисунке 5, так как на ее диодах действует одинарное обратное напряжение (в схеме двухфазного однотактного выпрямителя — удвоенное, так как напряжение на нагрузке и напряжение обмотки трансформатора складываются).

Однофазный выпрямитель напряжения подходит только для схем с относительно небольшим потребляемым током. При необходимости получить значительные величины постоянного тока лучше использовать трехфазный выпрямитель тока. Его основным преимуществом является меньший уровень пульсаций выходного напряжения, что значительно снижает требования к сглаживающему фильтру. В качестве примера приведем схему трехфазного однотактного выпрямителя тока. Она показана на рисунке 6.

Читайте также:  Часто переживаемое как внутреннее напряжение

Рисунок 6. Принципиальная схема трехфазного однотактного выпрямителя переменного тока

Трехфазный однотактный выпрямитель напряжения состоит из трёхфазного трансформатора и трёх выпрямительных диодов VD1, VD2 и VD3. Нагрузка включается между точкой соединения катодов диодов и общей точкой вторичных обмоток трансформатора. Для пояснения принципов работы данного устройства на рисунке 7 приведены временные диаграммы токов и напряжений на вторичных обмотках трансформатора, на выходе схемы и на одном из выпрямительных диодов.

Рисунок 7. Временные диаграммы токов и напряжений трехфазного однотактного выпрямителя тока

Трехфазный однотактный выпрямитель переменного тока применяется в относительно низковольтных устройствах. На его выходе удается получить пульсацию напряжения около 13%. Это соответствует требованиям к качеству питания большинства устройств. по крайней мере при сварке постоянным током электрическая дуга не будет гаснуть, что позволит получить качественный шов сварки металла.

Если для питания устройства требуется большее напряжение по сравнению с предыдущим случаем, то можно применить трехфазную двухтактную схему выпрямления тока. Она позволяет снизить требования к сглаживающему фильтру. Принципиальная схема трехфазного двухтактного выпрямителя тока приведена на рисунке 8. Это устройство известно также под названием трехфазного выпрямительного моста или схемы Ларионова.

Рисунок 8. Принципиальная схема трехфазного выпрямительного моста

Напряжение на выходе схемы, приведенной на рисунке 8, можно представить как сумму двух трехфазных однотактных выпрямителей тока, работающих в противофазе. Его можно записать как . Это позволяет увеличить количество фаз на выходе схемы и тем самым увеличить основную частоту пульсаций выходного напряжения. Это позволяет уменьшить требования к сглаживающему фильтру, а в ряде случаев вообще отказаться от него.

В схеме Ларионова на входе выпрямителя присутствуют три фазы обмотки, поэтому и ее пульсность . Отсюда можно определить основную частоту спектра пульсаций . Временные диаграммы токов и напряжений в различных точках схемы трехфазного выпрямительного моста приведены на рисунке 9.

Рисунок 9. Временные диаграммы токов и напряжений трехфазного выпрямительного моста

Как видно из приведенных временных диаграмм уровень пульсаций на выходе рассмотренного трехфазного выпрямителя тока значительно меньше предыдущих вариантов выпрямителей и составляет 3,5%. Однако с помощью трехфазного трансформатора можно получить на выходе количество фаз больше шести. Это позволяет дополнительно уменьшить уровень пульсаций напряжения на выходе трёхфазного выпрямителя тока. Возможна реализация девяти, двенадцати, восемнадцати и более фазных выпрямителей. Повышение количества фаз позволяет уменьшить уровень пульсаций напряжения на выходе выпрямителя. В качестве примера рассмотрим схему двенадцатипульсного выпрямителя тока. Его схема приведена на рисунке 10.

Рисунок 10. Схема двенадцатифазного выпрямителя тока

В данной схеме применяется трехфазный трансформатор с двумя вторичными обмотками для каждой фазы. При этом одна группа вторичных обмоток включается по схеме «звезда», а другая — «треугольник». В результате напряжения на выходе каждой из групп вторичных обмоток оказывается сдвинутыми на 30° Для того, чтобы напряжения были равны, количество витков в каждой из групп вторичных обмоток отличаются в 1.73 раза. Благодаря последовательному включению постоянные напряжения на выходе диодных мостов суммируются и на нагрузке действует напряжение с частотой пульсаций в 12 раз выше частоты сети и значительно меньшим по сравнению с предыдущими схемами уровнем пульсаций, равным 0.9%.

Дата последнего обновления файла 16.02.2018

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 4-е изд. испр. – М.: ИП Радио Софт, 2006. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.

Вместе со статьей «Выпрямитель переменного тока» читают:

Источник

Управляемые выпрямители. Временные диаграммы однофазных управляемых выпрямителей. Тиристорные преобразователи — источники регулируемого напряжения

Очень часто необходимо, чтобы выпрямитель не только преобразовывал переменное напряжение, но и был способен изменять его значение. Выпрямители, которые совмещают выпрямление переменного напряжения (тока) с управлением выпрямленным напряжением (током), называются управляемыми выпрямителями. Основным элементом управляемых выпрямителей является тиристор (хотя можно влепить и транзистор).

Рис. 1 — Управляемый однополупериодный выпрямитель

Управление выходным выпрямленным напряжением сводится к управлению во времени моментом отпирания тиристора. Это делается короткими импульсами с крутым фронтом (иголка). Если тиристор открыт в течении всего полупериода, то на выходе получается пульсирующее напряжение, аналогично неуправляемому выпрямителю. При изменении времени задержки отпирания тиристоров меняется выпрямленное напряжение в сторону уменьшения. Это видно из графиков ниже. Для каждой задержки соответствует определенный угол сдвига по фазе между напряжением на тиристоре и сигналом управления. Этот угол называется углом управления или регулирования и определяется как α=ωtз. tз — то самое время задержки, ω — угловая частота (ω=2πf).

Читайте также:  Обзор стабилизатора напряжения ресанта

Рис. 2 — Принцип управления выпрямленным напряжением задержкой открывания тиристоров

Управлять тиристором можно, например, с помощью вот такого фазовращателя:

Однофазные управляемые выпрямители выполняются по схеме с нулевым выводом трансформатора (одноплечевые) и по мостовой схеме (двухплечевые). Принцип действия и характеристики однофазных управляемых выпрямителей рассмотрим на примере схемы с нулевым выводом трансформатора (рис.5.4).

Рис.5.4. Однофазный управляемый выпрямитель

Рассмотрим работу управляемого выпрямителя на активно- индуктивную нагрузку с противо эдс.

Временные диаграммы напряжений и токов, приведенные на (рис.5.5,а-е), поясняют работу схемы.

Рис.5.5 а-е. Электромагнитные процессы в однофазном УВ.

В момент времени от системы управления (СУ) выпрямителя поступает импульс на управляющий электрод тиристора Т1. В результате отпирания тиристор Т1 подключает нагрузку на напряжение вторичной обмотки трансформатора. На нагрузке на интервале формируется напряжение (затемненная область на рис.5.5,б), представляющее собой участок кривой напряжения .Через нагрузку и тиристор Т1 протекает один и тот же ток. При переходе напряжения питания через нуль ток тиристора Т1 продолжает протекать вследствие того, что в нагрузке включена индуктивность. В кривой выходного напряжения создаются отрицательные участки.

Очередной отпирающий импульс подается на тиристор Т2. Отпирание этого тиристора приводит к запиранию Т1. При этом к нагрузке прикладывается положительное напряжения той же формы, что и на интервале проводимости тиристора Т1. На интервале проводимости тиристора Т2, сумма напряжений вторичных обмоток трансформатора подключаются к тиристору Т1, вследствие чего, с момента отпирания тиристора Т2, на тиристоре Т1 действует обратное напряжение (рис.5.5,е). В последующем процессы в схеме следуют аналогично, рассмотренным выше. Токи тиристоров показаны на рис.5.5,г,д, а ток нагрузки — на рис.5.5,в.

Потребляемый из сети ток i1 показан на рис.5.5,а. Первая гармоника потребляемого тока i1(1) отстает от напряжения сети по фазе. Это приводит к потреблению выпрямителем из сети реактивной мощности, что неблагоприятно сказывается на энергетических характеристиках.

Рассмотренный фазовый метод управления может быть реализован с помощью фазосдвигающих способов, одним из которых является вертикальный способ управления, основанный на сравнении опорного напряжения (обычно пилообразной формы) и постоянного напряжения сигнала управления. Равенство мгновенных значений этих напряжений определяет фазу , при которой схема вырабатывает импульс, затем усиливаемый и подаваемый на управляющий электрод тиристора. Изменение фазы управляющего импульса достигается изменением уровня входного напряжения управления . Функциональная схема такого управления приведена на рисунке 5.6.

Опорное напряжение, вырабатываемое генератором пилообразного напряжения ГПН и синхронизированное с напряжением сети с помощью синхронизированного с сетью генератора импульсов (ГИ), подаётся на схему сравнения СС, на которую одновременно поступает и входное управляющее напряжение uУ (сигнал управления ). Сигнал со схемы сравнения поступает на распределитель импульсов (РИ) и далее на оконечные усилители мощности (У), откуда в виде мощного, обладающего крутым фронтом и регулируемого по фазе импульса, подаётся на управляющий электрод тиристора.

Рис.5.6. Функциональная схема управления УВ.

Обычно между распределителем импульсов и оконечными усилителями используются схемы гальванической развязки, что на рис.5.6 условно показано ломаной стрелкой.

Одной из важнейших особенностей управляемого выпрямителя является его способность регулировать среднее значение выпрямленного напряжения при изменении угла . Если индуктивность в цепи нагрузки достаточно велика* для поддержания тока при отрицательном напряжении, то зависимость среднего выходного напряжения от угла управления находится из выражения:

(5.1)

где -амплитуда напряжения на вторичной обмотке трансформатора.

Тиристорные преобразователи частоты (инверторы) представляют собой устройства, преобразующие постоянное или переменное напряжение в переменное заданной частоты. Большинство современных тиристорных инверторов позволяют осуществлять изменение частотной характеристики выходного напряжения в требуемых пределах, благодаря чему они нашли широкое применение в различных отраслях промышленности и транспорта, например, для плавной регулировки скорости вращения асинхронных электродвигателей, обеспечения необходимого режима электропитания плавильных печей и т.п. Несмотря на то, что в последнее время все большее распространение получают преобразователи частоты на IGBT, тиристорные инверторы по-прежнему доминируют там, где необходимо обеспечить большие мощности (вплоть нескольких мегаватт) с выходным напряжением в десятки киловольт. Именно то, что тиристорные преобразователи частоты имеют высокий КПД (до 98%), способны успешно справляться с большими напряжениями и токами, а также выдерживать при этом импульсные воздействия и довольно продолжительную нагрузку, является их основным достоинством. Ниже приведена блок-схема наиболее типичного современного тиристорного преобразователя с явно выраженным звеном постоянного тока.

В выпрямителе (В) входное переменное напряжение выпрямляется и поступает в фильтр (Ф), где оно сглаживается, фильтруется, после чего опять преобразуется инвертором (И) в переменное, которое может регулироваться по таким параметрам, как амплитуда и частота.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Основные схемы выпрямления, временные диаграммы.

Выпрямителем называется электронное устройство, предназначенное для преобразования электрической энергии переменного тока в постоянный. В основе выпрямителей лежат полупроводниковые приборы с односторонней проводимостью – диоды и тиристоры.

Читайте также:  Фотоэффект при запирающем напряжении

Однофазная однополупериодная (однотактная) схема выпрямления

На рисунке 1 представлена простейшая схема выпрямления. Схема содержит один выпрямительный диод, включенный между вторичной обмоткой трансформатора и нагрузкой.

Рисунок 1 — Однофазный однополупериодный выпрямитель: а) схема — диод открыт, б) схема — диод закрыт, в) временные диаграммы работы

Напряжение u2 изменяется по синусоидальному закону, т.е. содержит положительные и отрицательные полуволны (полупериоды). Ток в цепи нагрузки проходит только в положительные полупериоды, когда к аноду диода VD прикладывается положительный потенциал (рис. 1, а). При обратной полярности напряжения u2 диод закрыт, ток в нагрузке не протекает, но к диоду прикладывается обратное напряжение Uобр (рис. 1, б).

Т.е. на нагрузке выделяется только одна полуволна напряжения вторичной обмотки. Ток в нагрузке протекает только в одном направлении и представляет собой выпрямленный ток, хотя носит пульсирующий характер (рис. 1, в). Такую форму напряжения (тока) называют постоянно-импульсная.

Выпрямленные напряжения и ток содержат постоянную (полезную) составляющую и переменную составляющую (пульсации). Качественная сторона работы выпрямителя оценивается соотношениями между полезной составляющей и пульсациями напряжения и тока. Коэффициент пульсаций данной схемы составляет 1,57. Среднее за период значение выпрямленного напряжения Uн = 0,45U2. Максимальное значение обратного напряжения на диоде Uобр.max = 3,14Uн.

Достоинством данной схемы является простота, недостатки: плохое использование трансформатора, большое обратное напряжение на диоде, большой коэффициент пульсации выпрямленного напряжения.

Однофазная мостовая схема выпрямления

Состоит из четырех диодов, включенных по мостовой схеме. В одну диагональ моста включается вторичная обмотка трансформатора, в другую – нагрузка (рис. 2). Общая точка катодов диодов VD2, VD4 является положительным полюсом выпрямителя, общая точка анодов диодов VD1, VD3 — отрицательным полюсом.

Рисунок 2 — Однофазный мостовой выпрямитель: а) схема — выпрямление положительной полуволны, б) выпрямление отрицательной полуволны, в) временные диаграммы работы

Полярность напряжения во вторичной обмотке меняется с частотой питающей сети. Диоды в этой схеме работают парами поочередно. В положительный полупериод напряжения u2 проводят ток диоды VD2, VD3, а к диодам VD1, VD4 прикладывается обратное напряжение, и они закрыты. В отрицательный полупериод напряжения u2 ток протекает через диоды VD1, VD4, а диоды VD2, VD3 закрыты. Ток в нагрузке проходит все время в одном направлении.

Схема является двухполупериодной (двухтактной), т.к. на нагрузке выделяется оба полупериода сетевого напряжения Uн = 0,9U2, коэффициент пульсаций — 0,67.

спользования мостовой схемы включения диодов позволяет для выпрямления двух полупериодов использовать однофазный трансформатор. Кроме того, обратное напряжение, прикладываемое к диоду в 2 раза меньше.

Питание постоянным током потребителей средней и большой мощности производится от трехфазных выпрямителей, применение которых снижает загрузку диодов по току и уменьшает коэффициент пульсаций.

Трехфазная мостовая схема выпрямления

Схема состоит из шести диодов, которые разделены на две группы (рис. 2.61, а): катодную — диоды VD1, VD3, VD5 и анодную VD2, VD4, VD6. Нагрузка подключается между точками соединения катодов и анодов диодов, т.е. к диагонали выпрямленного моста. Схема подключается к трехфазной сети.

Рисунок 3 — Трехфазный мостовой выпрямитель: а) схема, б) временные диаграммы работы

В каждый момент времени ток нагрузки протекает через два диода. В катодной группе в течение каждой трети периода работает диод с наиболее высоким потенциалом анода (рис. 3, б). В анодной группе в данную часть периода работает тот диод, у которого катод имеет наиболее отрицательный потенциал. Каждый из диодов работает в течение одной трети периода. Коэффициент пульсаций данной схемы составляет всего 0,057.

Управляемыми выпрямителями — выпрямители, которые совместно с выпрямление переменного напряжения (тока) обеспечивают регулирование величины выпрямленного напряжения (тока).Схемы управляемых выпрямителей строятся на тиристорах и основаны на управлении моментом открытия тиристоров.

На рисунке 4,а представлена схема однофазного управляемого выпрямителя. Для возможности выпрямления двух полуволн сетевого напряжения используется трансформатор с двухфазной вторичной обмоткой, в которой формируется два напряжения с противоположными фазами. В каждую фазу включается тиристор. Положительный полупериод напряжения U2 выпрямляет тиристор VS1, отрицательный – VS2.

Схема управления СУ формирует импульсы для открывания тиристоров. Время подачи открывающих импульсов определяет, какая часть полуволны выделяется на нагрузке. Тиристор отпирается при наличии положительного напряжения на аноде и открывающего импульса на управляющем электроде.

Если импульс приходит в момент времени t0 (рис. 4,б) тиристор открыт в течении всего полупериода и на нагрузке максимальное напряжение, если в моменты времени t1, t2, t3, то только часть сетевого напряжения выделяется в нагрузке.

Рисунок 4 — Однофазный выпрямитель: а) схема, б) временные диаграммы работы

Угол задержки, отсчитываемый от момента естественного отпирания тиристора, выраженный в градусах, называется углом управления или регулирования и обозначается буквой α. Изменяя угол α (сдвиг по фазе управляющих импульсов относительно напряжения на анодах тиристоров), мы изменяться время открытого состояния тиристоров и соответственно выпрямленное напряжение на нагрузке.

Источник