Меню

Виды трансформаторов высокого напряжения

Трансформатор простыми словами

Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

Промышленный трансформатор

Рис. 1. Промышленный трансформатор

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Устройство трансформатора

Рисунок 2. Устройство трансформатора

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Рисунок 3. Внешний вид трансформатора

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W1 / W2, где символами W1 и W2 обозначено количество витков в катушках.

Виды магнитопроводов

Если k > 1, то трансформатор повышающий, а при 0 Виды магнитопроводов

Более широкий спектр охватывает классификация по назначению.

Силовые

Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

Автотрансформаторы

Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Читайте также:  Как пользоваться преобразователем напряжения 12 220

Трансформатор тока

Трансформатор тока

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Импульсные

В работе современной электронике применяются высокочастотные сигналы, которые часто необходимо отделить от других сигналов.
Задача импульсных трансформаторов – преобразования импульсных сигналов с сохранением формы импульса.

Для высокочастотных импульсных аппаратов выдвигаются требования о максимальном сохранении формы импульса на выходе. Имеет значение именно форма, а не амплитуда и даже не знак.

Сварочные

В работе сварочного аппарата важен большой сварочный ток. При этом, сетевое напряжение понижают до безопасного уровня. Благодаря мощному электрическому току дуговой разряд сварочного аппарата плавит металл.

В сварочном трансформаторе имеется возможность ступенчатого регулирования величины тока во вторичных цепях способом изменения индуктивного сопротивления, либо путем секционирования одной из обмоток.

Фото устройства представлено на рисунке 6. Обратите внимание на наличие коммутирующего переключателя.

Трансформатор для сварочного полуавтомата на броневом магнитопроводе

Рис. 6. Трансформатор для сварочного полуавтомата на броневом магнитопроводе

В сварочных аппаратах применяют конструкции на основе однофазных трансформаторов, а также с применением трехфазных трансформаторов. Для сварки некоторых металлов, например, нержавейки, сварочный ток выпрямляют.

Разделительные

Устройства, в которых нет электрической связи между обмотками, называют резделительными трансформаторами. Силовые разделительные аппараты применяются для повышения безопасности электросетей. Другая область применения разделительных трансформаторов – обеспечение гальванической развязки между отдельными узлами электрических цепей.

Согласующие

Данные типы аппаратов применяют для согласования сопротивления каскадов электронных схем. Они обеспечивают минимальное искажение формы сигналов, создают гальванические развязки между узлами электронных устройств.

Пик-трансформаторы

Аппараты, преобразующие синусоидальные токи в импульсные напряжения. Полярность выходных напряжений меняется через каждых полпериода.

Воздушные и масляные

Силовые трансформаторы бывают сухими (с воздушным охлаждением) (см. рис. 7) и масляными (см. рис. 8).

Модели сухих силовых трансформаторов чаще всего используют для преобразований сетевых напряжений, в том числе и в схемах трехфазных сетей.

Сухой трехфазный трансформатор

Рисунок 7. Сухой трехфазный трансформатор

При подключении нагрузки происходит нагревание обмоток, что грозит разрушением электрической изоляции. Поэтому в сетях с напряжениями свыше 6 кВ работают приборы с масляным охлаждением. Специальное трансформаторное масло повышает надежность изоляции, что очень важно при больших выходных мощностях.

Строение промышленного трансформатора с масляным охлаждением

Рис. 8. Строение промышленного трансформатора с масляным охлаждением

Сдвоенный дроссель

Конструктивно такой аппарат является трансформатором с одинаковыми катушками. Катушки одинаковой мощности образуют встречный индуктивный фильтр. Эффективность аппарата выше, чем у дросселя (при одинаковых размерах).

Вращающиеся

Применяются для обмена сигналами с вращающимися барабанами. Конструктивно состоят из двух половинок магнитопровода с катушками. Эти части вращаются относительно друг друга. Обмен сигналами происходит при больших скоростях вращения.

Обозначение на схемах

Трансформаторы наглядно изображаются на электрических схемах. Символически изображаются обмотки, которые разделены магнитопроводом в виде жирной или тонкой линии (см. рис. 9).

Пример обозначения

Пример обозначения

На схемах трехфазных трансформаторов обмотки начинаются со стороны сердечника.

Области применения

Кроме преобразования напряжений в электрических сетях, трансформаторы часто применяются в блоках питания радиоэлектронных устройств. Преимущественно это автотрансформаторы, которые одновременно выдают несколько напряжений для различных узлов.

Сегодня все чаще используют бестрансформаторные блоки питания. Однако там где требуется питание мощным переменным током, без электромагнитных устройств не обойтись.

Источник

Основные типы силовых трансформаторов

Трансформаторы используются в электротехнике для преобразования переменного тока из одного напряжения в другое посредством электромагнитной индукции, с сохранением неизменной частоты при минимальных мощностных потерях.

Существуют различные типы трансформаторов по количеству фаз, числу обмоток, типу изоляции и виду охлаждения. Распространенная классификация устройств основана на том, куда погружается магнитная система (сердечник), то есть, по типу охлаждения. В этом случае выделяют трансформаторы:

  • Масляные – погружение сердечника происходит в трансформаторное масло с диэлектрическими свойствами (оно находится в корпусе прибора)
  • Сухие – в обмотку заливается эпоксидная смола
  • Жидкостные – в качестве охлаждающей среды используются различные органические жидкости, то есть негорючие диэлектрики

Охлаждение для всех трех видов трансформаторов имеет свои нюансы. Для вашего удобства мы свели их в таблицу:

Вид трансформатора Тип охлаждения Обозначение
Сухие Естественное воздушное – для открытого исполнения С
Аналогично – для защищенного исполнения СЗ
Аналогично – для герметичного исполнения СГ
Воздушное с дутьем СД
Масляные Естественная циркуляция воздуха и масла М
2 вида циркуляции – принудительная для воздуха и естественная для масла Д
2 вида циркуляции – естественная для воздуха и принудительная для масла МЦ
Принудительная циркуляция воздуха и масла ДЦ
2 вида циркуляции – принудительная для воды и естественная для масла МВ
Принудительная циркуляция воды и масла Ц
Жидкостные Естественное охлаждение – негорючий жидкий диэлектрик Н
Охлаждение негорючим жидким диэлектриком посредством дутья НД

image1.png

Среди этих трех типов наиболее популярны последние. Почему – об этом вы можете прочесть здесь, в одном из наших материалов. Мы же расскажем об основных критериях классификации трансформаторов по типам и чуть подробнее остановимся на сухих разновидностях.

Основные параметры классификации трансформаторов

О нем мы частично упомянули выше. Видов охлаждения несколько:

  • М – масляное
  • Д – охлаждение в масляной среде + воздушное дутье
  • Ц – масляное охлаждение с принудительной циркуляцией
  • С – воздушное охлаждение (то есть, «сухие» трансформаторы)

Маркировка типов трансформаторов расшифровывается следующим образом:

  • Буквенное обозначение – кол-во фаз, тип охлаждения, число обмоток и вид переключения ответвлений. Также могут быть дополнительные буквенные маркировки, говорящие о специальных особенностях конкретного трансформатора
  • Номинальная мощность + класс напряжения
  • Последние 2 цифры года выпуска рабочих чертежей конкретного трансформатора
  • Климатическое исполнение и категория размещения по ГОСТ 15150-69
Читайте также:  Напряжение конца заряда li ion

Далее мы перечислим другие основные параметры классификации:

  • Климатическое исполнение

Прибор бывает наружный или внутренний

  • Конструктивное исполнение и характер работы

На этом параметре стоит остановиться более подробно:

  1. Автотрансформаторы – одна обмотка с несколькими отводами, переключение между которыми позволяет получить разные показатели напряжения.
  2. Импульсные – преобразовывают импульсный сигнал незначительной продолжительности (около десятка микросекунд) с минимальным искажением.
  3. Разделительные – между первичной и вторичной обмоткой электрической связи нет, присутствует гальваническая развязка между входными и выходными цепями.
  4. Пик—трансформатор – применяется для управления полупроводниковыми электрическими устройствами типа тиристоров
  • Количество фаз

Трехфазные (наиболее распространенные) и однофазные.

  • Количество обмоток

2-х и 3-х обмоточные с расщепленной обмоткой или без неё

  • Тип изоляции

По типу изоляции – сухие (С) и масляные (М) или с негорючим заполнением (Н).

Понижающие (для низкого напряжения из высоковольтных линий) и повышающие (соответственно, наоборот)

  • Уровень напряжения

Высоковольтный, низковольтный, высокопотенциальный

  • Форма магнитопровода

Стержневой, тороидальный, броневой

Всего выделяют 6 групп трансформаторов:

  • 1-я группа (изделия с мощностью до 100 кВА)
  • 2-я группа (диапазон мощности от 160 до 630 кВА)
  • 3-я группа (от 1000 до 6300 кВА)
  • 4-я группа (показатель мощности выше 10000 кВА)
  • 5-я группа (все трансформаторы с мощностью выше 40000 кВА)
  • 6-я группа (мощность от 100000 кВА)

Среди дополнительных критериев классификации стоит отметить наличие/отсутствие:

  • Наличие/отсутствие регулятора выходного напряжения.
  • Без расширителей, с азотной подушкой для защиты

Сухие трансформаторы

Несмотря на то, что масляные трансформаторы пользуются большой популярностью, широко востребованы силовые трансформаторы и сухого типа, в частности:

  • Силовые трехфазные с литой изоляцией ТСЛ (ТСГЛ) и ТСЗЛ (ТСЗГЛ)
  • Силовые трехфазный ТС и ТСЗ
  • Сухие ТС и ТСЗ
  • Трансформаторы собственных нужд (сухого типа) ТСКС

Назначение трехфазных сухих трансформаторов с воздушным охлаждением – преобразование электроэнергии в электросетях трехфазного переменного тока частотой 50 Гц. Предельная мощность сухих трансформаторов – 2500 кВА.

Такие трансформаторы монтируются на производстве и в общественных зданиях – на любых объектах, где действуют повышенные требования в области пожарной безопасности, взрывозащищенности и экологичности, то есть, где использование масляного трансформатора является потенциальным риском. Единственное неудобство от сухих приборов – повышенный шум при работе.

Источник



Виды трансформаторов

Трансформаторы тока

    Содержание:
  • Понятие и виды трансформаторов
  • Трансформаторы напряжения
  • Трансформаторы тока
  • Силовые трансформаторы
  • Трансформаторы сварочные
  • Расчет трансформатора

Понятие и виды трансформаторов

Трансформатор – это устройство, которое преобразует переменный напряжения одного определенного уровня в переменный ток напряжения уровня другого. Частота при этом не изменяется, как не изменяется и мощность. Трансформатор включает в свое устройство магнитопровод, изготовленный с применением ферромагнитного материала, на который намотано несколько изолированных обмоток из проволоки (либо одна в случае автотрансформатора). Эти обмотки охвачены общим магнитным потоком.

Различают трансформаторы:

  • трансформаторы напряжения (преобразуют напряжение, снижая его до нужной величины);
  • трансформаторы тока (снижают первичный ток до уровня, необходимого в работе устройства);
  • силовые (преобразует электроэнергию в электрических сетях в приборах, которые ее используют; самый распространенный вид трансформаторов);
  • автотрансформаторы (первичная и вторичная обмотки соединены и часто не изолированы; отличает высокое КПД; применяют в случаях, когда преобразование электроэнергии незначительно);
  • импульсные трансформаторы (преобразуют импульсные сигналы, практически не искажают сигналы тока);
  • разделительные трансформаторы (обмотки не соединены и никак не связаны друг с другом, что позволяет обеспечивать безопасность в случае повреждения изоляции электросетей);
  • пик-трансформаторы (преобразуют напряжение в напряжение, которое меняет свою полярность каждую половину периода).

Трансформаторы напряжения

Трансформаторы напряжения

Трансформаторы напряжения предназначены для трансформации и снижения напряжения в более низкое. Обычно необходимо это для измерения напряжения электроэнергии, идущей из сети. Трансформаторы напряжения помогают изолировать цепи измерения и защиты от самой электросети с электроэнергией высокого напряжения.

Трансформаторы напряжения бывают заземляемыми и незаземляемыми. Заземляемый трансформатор может быть однофазным и трехфазным. Однофазный имеет один заземленный конец первичной обмотки, а в трехфазном заземлена нейтраль обмотки первого уровня.

В незаземляемом трансформаторе напряжения вся первичная обмотка изолирована и земли.

Кроме того, различают трансформаторы напряжения каскадные и емкостные. В каскадных первичную обмотку разделяют на несколько секций, последовательно соединенных друг с другом. В этом случае мощность к обмотке вторичной передается с помощью дополнительных, играющих соединительную роль, обмоток. В емкостном трансформаторе напряжения есть емкостный делитель.

Также трансформаторы напряжения различаются по количеству обмоток. В двухобмоточных есть лишь одна вторичная обмотка, в трехобмоточных помимо основной вторичной обмотки присутствует и вторая. В зависимости от того, где необходимы трансформаторы напряжения, выбирают тот или иной тип устройств.

Трансформаторы тока

Трансформаторы тока применяют, когда необходимо преобразовать лишь ток электроэнергии, идущей от сети, а также, когда нужно измерить эту величину. В этом случае первичную обмотку включают в цепь с переменным током, который будут измерять, последовательно, а ко второй подключают прибор для самого измерения.

Ток исходный пропорционален току, полученному в результате преобразования. Таким образом измеряют ток электричества, идущего от станции.

На трансформаторы тока распространяются строгие требования по точности измерения, так как они применяются в основном в приборах релейной защиты систем в сфере электроэнергетики. Именно эти устройства помогают обеспечить безопасность измерения тока, так как они изолируют цепи для измерения от первичных цепей, по которым обычно проходит ток высокого напряжения (от 100 кВт). Высокая точность и безопасность трансформатора тока – вот главные требования к этим приборам, поэтому трансформаторы тока производятся с несколькими группами вторичной обмотки.

Читайте также:  Видеоуроки по физике 8 класс зависимость силы тока от напряжения

Трансформаторы тока

Как минимум, групп две: к первой подключают защитные приборы, а ко второй – измерительные устройства, различные счетчики. Вторичную обмотку во время работы трансформатора тока никогда не размыкают.

Силовые трансформаторы

Силовые трансформаторы – это устройства стационарные, которые имеют как минимум две обмотки, использующиеся для преобразования напряжения и тока до необходимого в работе уровня. Как правило, частота преобразованной электроэнергии остается прежней. Силовые трансформаторы состоят из клемм, охладителей и приборов для регулирования уровня выходного напряжения. Кроме того, на такой трансформатор можно установить газовое реле, устройства для сброса давления, защиты от перенапряжений и резкого повышения давления. Также возможна установка на силовые трансформаторы поглотителей влаги и дополнительных трансформаторов тока, расходомеров, индикаторов температуры, давления, уровня масла и горючих газов. Помимо данных устройств, на силовые трансформаторы можно установить полозья или колеса, которые сделают их транспортабельными.

Обычно силовые трансформаторы применяют в случае необходимости увеличить ток и снизить напряжение электроэнергии, идущей от основной электростанции, поэтому силовые трансформаторы используются в различных отраслях промышленности. То есть везде, где применяют устройства, работающие на электроэнергии, а также везде, где жизненно необходимо регулировать параметры электричества, преобразуя ее в электричество нужного тока и напряжения и препятствуя резким скачкам этих параметров.

Силовые масляные трансформаторы

Во многих отраслях народного хозяйства активно используются силовые масляные трансформаторы. Такой большой спрос на них обуславливается тем, что установить их легко можно как снаружи, так и внутри помещения. Обмотки силовых масляных трансформаторов отлично защищены от воздействия окружающей среды, за счет чего заметно увеличивается и их срок службы. Это делает их также надежными и неприхотливыми в процессе эксплуатации.

Есть у силовых масляных трансформаторов и недостаток – он заключается в том, что окружающая среда должна иметь минимум пыли в воздухе. Кроме того, она должна быть пассивной химически и совершенно невзрывоопасной. Этот недостаток можно назвать единственным, но при этом он довольно существенный.

Силовые масляные трансформаторы, в которых устанавливается еще маслоуказатель МС, способны выдерживать очень большие нагрузки напряжения. Использовать трансформаторы можно как в жарком, так и в холодном климате. Необходимы они с целью понижения напряжения в сети электрической.

Трехфазные и высоковольтные трансформаторы

Литой трансформатор тока

Могут быть трансформаторы трехфазными и высоковольтными.
Высоковольтные трансформаторы отличаются способностью выдерживать достаточно высокую нагрузку. За счет этого использовать их можно даже на крупных предприятиях. Их основная работа заключается в том, чтобы от высоковольтной линии преобразовывать ток в более низкие частоты.

Трехфазные трансформаторы способны преобразовывать ток при разных температурах воздуха. Но в условиях тряски, вибрации или ударов такие трансформаторы использовать запрещено.

Трансформаторы сварочные

Трансформатор сварочный – устройство для сварочных приборов, которое преобразует высокое напряжение в напряжение низкое для вторичных электросетей уровня, необходимого в работе.

Сварочный трансформатор применяют для сварочных работ во время производства конструкций из стали. Кроме того, трансформаторы необходимы для сварки цветных металлов. Применяются эти устройства в основном в промышленном строительстве. Их используют во время монтажа технических или строительных конструкций из металла, изготовлении деталей и во время сварки арматуры, труб и узлов.

Трансформатор сварочный состоит из сердечника, изготовленного из специальной стали, на котором есть первичная и вторичная обмотка. Первая пропускает переменный ток и намагничивает магнитопровод, а во второй переменный ток нужного для сварки уровня индуктируется.

Существует два основных вида сварочных трансформаторов, один из которых отличается повышенным магнитным рассеянием, а второй имеет нормальное рассеяние и дроссель.

Трансформатор сварочный применяется при создании сварочных швов любого вида и назначения в любом труднодоступном месте и расположении самого работника. Используя это устройство, вы сможете практически без замены инструментов выполнять многие сварочные работы.

Расчет трансформатора

Расчет трансформатора производят во время его изготовления для того, чтобы получить необходимые параметры напряжения, частоты или тока электроэнергии, которая выходит в результате его применения. Обычно расчет трансформатора делают, когда устройство подключают в сеть в 50Гц частотой, и в случае, если сам прибор весит мало.

Начинают производить расчет трансформатора с выбора сердечника – с выбора его размеров и конфигурации. В зависимости от конструкции сердечники бывают прямоугольной формы с заостренными или закругленными краями и круглой формы, т.е. броневые пластинчатые, броневые ленточные или кольцевые ленточные соответственно. Так, броневые трансформаторы применяют для малых мощностей. Такие устройства очень просты в производстве и состоят всего из одного каркаса. Кольцевой сердечник пригоден для мощностей до 1000 Вт. Для того, чтобы произвести дальнейший расчет трансформатора необходимо знать напряжение первичной и вторичной обмотки (Ui и Uz), ток обмотки вторичной (l2) и ее мощность (Рвых).

Расчет трансформатора производят по уравнению, в котором величина умножения сечения стали в месте катушки на площадь окна сердечника равна величине, полученной в результате арифметических действий. А именно, — деления величины мощности вторичной обмотки, умноженной на 0.901, на число, которое получилось в результате умножения магнитной индукции, плотности тока, коэффициентов заполнения окна и заполнения магнитопровода сталью.

Источник