Меню

Усилитель мощности высокой частоты схем

Усилители высокой частоты (УВЧ) и конвертеры для УКВ радиоаппаратуры

Усилитель Высокой Частоты (УВЧ) является первичным звеном радиоприемника, связывающим приемник с антенной. Очень часто радиолюбители для названия этого устройства применяют слово «преселектор», которое можно расшифровать как «предварительный выбор частоты». На мой взгляд, понятие «УВЧ» имеет более широкий смысл.

Главная задача преселектора состоит в «выборе частот», т.е. в выделении нужного сигнала из общей массы поступающих на антенное устройство ВЧ сигналов. УВЧ кроме селекции должен также и усиливать выбранные сигналы.

К УВЧ любого приемника предъявляются следующие основные требования:

  • Необходимость ослабления сигналов на побочных каналах приемника (т.е. на зеркальной и промежуточной частотах радиоприемника), при этом ослабление полезного сигнала, поступающего из антенны, должно быть минимальным. Ослабление всех нежелательных сигналов характеризуется избирательностью УВЧ.
  • УВЧ должен усиливать поступающий от антенны сигнал, при этом следует уделить внимание тому, чтобы УВЧ не вносил повышения шумов. Минимальные шумы — это самое основное требование к УВЧ для УКВ приемной аппаратуры. В густонаселенных радиолюбителями районах, УВЧ, кроме того, должен способствовать увеличению динамического диапазона радиоприемника, поскольку при этом снижаются уровни помех в тракте усилителя радиочастоты и на входе смесителя. Но это в большей степени относится к приемникам КВ.
  • УВЧ должен быть хорошим согласующим устройством между входным волновым сопротивлением фидера антенны и первым каскадом усиления УВЧ (или смесителя). Равенство этих сопротивлений обеспечивает максимальную передачу высокочастотной энергии на вход первого каскада УВЧ приемника (или смесителя). От качества согласования зависит чувствительность радиоприемника.

При высоком уровне помех между антенным входом и УВЧ применяют специальные ВЧ фильтры. Они могут быть как перестраиваемые, так и не перестраиваемые по частоте.

Для работы в различных участках УКВ диапазонов применяют, как правило, фильтры неперестраи-ваемые. Перестраиваемый преселектор с высокой избирательностью для низкочастотных УКВ диапазонов можно выполнить на спиральных резонаторах, представляющих собой полые металлические цилиндры или прямоугольные коробки, внутри которых на равных расстояниях от стенок размещены катушки индуктивности.

Внутренняя поверхность цилиндров или коробок должна иметь хорошую проводимость на высоких частотах, поэтому она должна быть возможно более гладкой и, как правило, эту поверхность серебрят. Рассмотрение конструкций спиральных резонаторов не входит в число задач этой статьи.

УВЧ должен усиливать принимаемый сигнал до уровня, превышающего уровень шумов смесителя. Уровень шумов УВЧ в наибольшей мере определяет уровень шумов приемника и, следовательно, чувствительность приемника. Поэтому все элементы УРЧ и в особенности транзисторы выбирают с учетом их шумовых параметров.

Граничные частоты транзисторов УВЧ должны быть по крайней мере в 3—5 раз выше рабочей частоты. Ток коллектора в рабочей точке не рекомендуется выбирать меньше 0,5—1 мА, так как при меньшем токе сильно сказывается зависимость параметров транзистора от температуры и значительно уменьшается крутизна транзистора.

Перечисленные выше требования к УВЧ дают основание к тому, чтобы в этой статье рассматривать не конкретно схему только каскадов УВЧ, а в комплексе со схемами устройств согласования УВЧ с фидерами антенн и смесителями.

Поэтому здесь приводятся схемы, реально существующих и полностью работоспособных схем УРЧ, а так же схемы конвертеров, включающих в себя кроме фильтра ВЧ и УВЧ, смеситель и первый каскад УПЧ, а так же гетеродин.

Отдельные блоки УВЧ

В этом разделе я привожу схемы и краткое описание отдельных блоков, которые могут применяться как отдельные от основного приемника, самостоятельные внешние блоки усиления высокой частоты. Как правило, эти внешние УВЧ стоит применять, если вы используете радиоприемник с недостаточной чувствительности.

Проверить достаточность чувствительности УКВ приемника очень просто. Для этого нужно настроить приемник с подключенной антенной на чистый от станций участок диапазона и замкнуть антенный вход приемника на корпус (на землю). Если вы при этом наблюдаете резкое снижение шумов на выходе приемника, то чувствительность вашего приемника вполне достаточная.

Но если резкого снижения шумов не наблюдается, или никакого снижения вообще, — это означает, что вы должны либо улучшить согласование антенны с фидером, либо увеличить чувствительность приемника путем добавления внешних малошумящих каскадов усиления высокой частоты.

Иногда внешний усилитель подключают непосредственно к антенне. В этом случае УВЧ должен быть защищен от попадания влаги и хорошо согласован с одной стороны с выходом антенны, с другой стороны -с антенным фидером. Также необходимо решить вопрос с подачей питания.

УВЧ с низкоомным входом и выходом

На рис. 1 показана схема малошумящего УВЧ, предназначенная для работы в качестве первого каскада радиоприемника.

Схема малошумящего усилителя ВЧ, предназначенная для работы в качестве первого каскада радиоприемника

Рис. 1. Схема малошумящего усилителя ВЧ, предназначенная для работы в качестве первого каскада радиоприемника.

В схеме применен сверхвысокочастотный мало-шумящий транзистор VT1 типа КТ3132 или КТ3101. УВЧ не имеет резонансных контуров и в качестве нагрузки транзистора работает высокочастотный трансформатор Трі, намотанный на кольце диаметром 7. 8 мм из феррита марки 50ВЧ. Изготовленный по этой схеме и указанными элементами, УВЧ может работать в диапазоне частот от 50 до 200 МГц.

Если использовать ферритовое кольцо с более высокочастотными параметрами, то можно рассчитывать на работу УВЧ на более высоких частотах.

Конструктивное выполнение ВЧ трансформатора показано на рис. 2. Он имеет три обмотки, которые должны соединяться между собой точно по схеме. Начало и конец первой из обмоток на схеме помечены как ні и кі, начало и конец второй — как н2 и к2 и т.д. Первая и вторая обмотки имеют по 5 витков, третья обмотка — 2 витка из провода ПЭЛ-0,2. 0,3.

При изготовлении трансформатора берутся три куска провода такой длины, чтобы обеспечить точное выполнение необходимого количества витков.

Затем начала трех кусков зажимаются вместе и провода скручиваются в плотный жгут, который после этого наматывается на ферритовое кольцо. Нужно не забыть, что после намотки на кольцо двух витков следует вывести конец третьей обмотки кЗ и дальше продолжать намотку жгута, который будет состоять уже из двух проводов.

Катушка L1 на рис. 6.1 представляет собой ВЧ дроссель, также намотанный на аналогичном ферритовом кольце. Число витков на кольце из феррита 50ВЧ диаметром 7. 8 мм должно быть 17. 20.

В качестве диодов VD1 и VD2 можно использовать КД522, КД514 и даже Д220 или Д219 -в крайнем случае. Входное и выходное сопротивления УВЧ примерно равны между собой и составляют 50 Ом.

Конструктивное выполнение ВЧ трансформатора для схемы УВЧ

Рис. 2. Конструктивное выполнение ВЧ трансформатора для схемы УВЧ.

УВЧ для телевизионных каналов ДМВ

За последние годы на рынках страны появились телевизионные антенны производства польских фирм. Эти антенны снабжаются достаточно чувствительным и малошумящим УВЧ. Особенность антенны в том, что она требует хорошего-заземления.

Малоопытные владельцы этих конструкций часто не обращают внимание на это обстоятельство, и усилители антенны выходят из строя при первой же небольшой грозе.

Читайте также:  Мощность панельной батареи отопления

Поэтому на рынке (во всяком случае, в нашем городе) можно купить отдельную плату с подобным антенным усилителем. Я иногда пользовался такой возможностью.

На одной из этих плат стоит обозначение SWA-49 и указано зашифрованное название производителя — AST.

Установив данный усилитель на своей антенне, вы, возможно, сможете решить проблемы с приемом удаленных УКВ станций. Точные параметры этих усилителей мне неизвестны, практика показывает, что они обеспечивают довольно хорошее усиление на частотах от 50 до 600 МГц.

УВЧ с умножителем добротности

В начале этого раздела было рассказано о двух вариантах УВЧ, которые могут работать в большом диапазоне частот. Такие УВЧ обычно называются широкополосными и используются в приемниках, предназначенных для просмотра довольно большого частотного диапазона. Но в любительской практике необходимость в такого рода приемниках бывает очень редко.

Чаще всего радиолюбителю необходим приемник, работающий в пределах довольно узкого любительского диапазона. К тому же, приемник с широкополосным УВЧ на входе будет подвержен помехам от близкоработающих мощных вещательных радиостанций.

Поэтому здесь я предлагаю для рассмотрения принципиальную схему УВЧ, который способен организовать прием сигналов только в узкой полосе частот, что поможет избавиться от помех и одновременно улучшит другие параметры приемника.

На рис. 3 показана схема очень эффективного УВЧ, который можно применять в низкочастотных участках УКВ диапазона. Данная конструкция разработана мною для применения на диапазоне 145 МГц.

Схема очень эффективного усилителя высокой частоты для УКВ радиоаппаратуры

Рис. 3. Схема очень эффективного усилителя высокой частоты для УКВ радиоаппаратуры.

Несколько лет тому назад мною была разработана схема УВЧ с умножителем добротности (умножителем Q) на полевом транзисторе КП303Д и последующим апериодическим каскадом усиления на транзисторе КТ610.

По этой схеме был построен внешний усилитель ВЧ, показавший исключительно хорошие результаты при совместной работе со связными ламповыми приемниками. Как потом выяснилось, этот УВЧ заметно улучшал чувствительность и избирательность многих конструкций транзисторных связных приемников.

Отличные результаты были получены при приеме сигналов от Искусственных Спутников Земли (ИC3) RS-10/11 и RS-12/13 на диапазоне 29 МГц. Схема и описание этого УВЧ находится в Интернете на моем сайте, расположенном по адресу r3xb.narod.ru в разделе «Модемы» (Преселектор с умножителем Q).

Для применения данного УВЧ на диапазоне 144 МГц в схему пришлось внести некоторые изменения. Схема доработанного варианта как раз и показана на рис. 3.

Здесь применены широкодоступные радиодетали, непременное требование одно — переменный резистор R3 не должен быть проволочным (т.е. должен быть безиндуктивным).

Сигнал из антенного фидера ВЧ сигнал поступает через конденсатор очень маленькой емкости С1 на контур L1C2. Величину емкости С1 можете подбирать по своему усмотрению, но в любом случае она на диапазоне 145 МГц не должна превышать 3,3 пФ. На более низкочастотных диапазонах, например, на 29 МГц, эта величина может быть увеличена до 8 пФ.

Резисторы R4, R5 и R6 задают режим работы VT1. Через R1 и R3 осуществляется обратная связь контура L1C2 с истоком транзистора VT1. Чем меньше величина сопротивления переменного резистора R3, тем больше величина напряжения обратной связи и одновременно увеличивается добротность контура.

Происходит так называемый процесс умножения добротности контура (умножение Q). При некоторой величине этого напряжения усилитель превращается в генератор.

Та величина напряжения обратной связи, при которой УВЧ превращается в генератор, называется «порогом генерации». Самая высокая добротность контура L1C2 при напряжении обратной связи близком к порогу генерации.

В этом случае УВЧ имеет самую узкую полосу пропускания, но несколько повышаются шумы. Поэтому, когда от вашего приемника требуется самая высокая чувствительность, УВЧ следует настроить на более широкую полосу пропускания.

Транзистор VT2 работает как обычный апериодический усилитель. В этом каскаде применен малошумящий ВЧ транзистор средней мощности КТ610. В своих конструкциях можете применять иные, более удобные для вас, транзисторы.

Катушка L1 бескорпусная, имеет 5 витков провода ПЭЛ-0,6 и намотана на болванке диаметром 8 мм. Длина катушки — 25 мм. Отвод выполнен от середины катушки.

Катушка L2 представляет собой высокочастотный дроссель и делается только в том случае, когда при настройке не удается достигнуть порога генерации. Катушка наматывается куском провода ПЭЛ-0,4 длиной 0,1. 0,2 от длины волны, на которой применяется УВЧ. Конденсатор С2 должен быть обязательно с воздушным диэлектриком.

На рис. 4 показана схема точно такого же УВЧ, но предназначенная для работы на диапазоне 29 МГц. Может применяться и на КВ диапазонах, но при этом следует выбирать соответствующие параметры контурных катушек. Для диапазона 29 МГц катушка L1 должна быть выполнена на каркасе 8 мм, число витков — 25 проводом ПЭЛ-0,4, длина намотки — 15 мм.

Схема усилителя высокой частоты (УВЧ) для диапазона 29 МГц

Рис. 4. Схема усилителя высокой частоты (УВЧ) для диапазона 29 МГц.

Для использования подобного усилителя на других диапазонах смотрите информацию на моем сайте.

Малошумящий узкополосый УВЧ

На рис. 5 приведена схема УВЧ, выполненная на малошумящих транзисторах импортного производства. Схема рассчитана на применение в диапазоне 435 МГц и частично мною упрощена по сравнению с оригиналом, заимствованным из радиолюбительской литературы.

Схема УВЧ на малошумящих транзисторах импортного производства

Рис. 5. Схема УВЧ на малошумящих транзисторах импортного производства.

Величины резисторов R1 и R3 подбираются по величинам тока через транзисторы, которые обеспечивают лучшие шумовые характеристики УВЧ.

В схеме применены транзисторы, выполненные на базе соединений галлия, поэтому, если у вас окажутся подобные транзисторы, следует познакомиться с правилами обращения с этими приборами.

Источник

Простые усилители высокой частоты (УВЧ) для приемников

Усилители высоких частот (УВЧ) применяются для увеличения чувствительности радиоприемных средств — радиоприемников, телевизоров, радиопередатчиков. Помещенные между приемной антенной и входом радио или телеприемника, подобные схемы УВЧ увеличивают сигнал, поступающий от антенны (антенные усилители).

Использование таких усилителей позволяет увеличить радиус уверенного радиоприема, в случае радиостанций (приемо-передающих устройств -приемопередатчиков) либо увеличить дальность работы, либо при сохранении той же дальности уменьшить мощность излучения радиопередатчика.

На рис.1 приведены примеры схем УВЧ, часто используемых для увеличения чувствительности радиосредств. Значения используемых элементов зависят от конкретных условий: от частот (нижней и верхней) радиодиапазона, от антенны, от параметров последующего каскада, от напряжения питания и т.д.

На рис.1 (а) приведена схема широкополосного УВЧ на одном транзисторе, включенном по схеме с общим эмиттером (ОЭ). В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Необходимо напомнить, что в справочных данных на транзисторы приводятся предельные частотные параметры. Известно, что при оценке частотных возможностей транзистора для генератора, достаточно ориентироваться на предельное значение рабочей частоты, которое должно быть, как минимум, в два-три раза ниже предельной частоты, указанной в паспорте. Однако для ВЧ-усилителя, включенного по схеме ОЭ, предельную паспортную частоту уже необходимо уменьшать, как минимум, на порядок и более.

Читайте также:  Гимс разрешенная мощность мотора

Примеры схем простых усилителей высокой частоты (УВЧ) на транзисторах

Рис.1. Примеры схем простых усилителей высокой частоты (УВЧ) на транзисторах.

Радиоэлементы для схемы на рис.1 (а):

  • R1=51к(для кремниевых транзисторов), R2=470, R3=100, R4=30-100;
  • С1=10-20, С2= 10-50, С3= 10-20, С4=500-Зн;
  • Т1 — кремниевые или германиевые ВЧ-транзисторы, например, КТ315, КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов приведены для частот УКВ-диапазона. Конденсаторы типа КЛС, КМ, КД и т.д.

Транзисторные каскады, как известно, включенные по схеме с общим эмиттером (ОЭ), обеспечивают сравнительно высокое усиление, но их частотные свойства относительно невысоки.

Транзисторные каскады, включенные по схеме с общей базой (ОБ), обладают меньшим усилением, чем транзисторные схемы с ОЭ, но их частотные свойства лучше. Это позволяет использовать те же транзисторы, что и в схемах с ОЭ, но на более высоких частотах.

На рис.1 (б) приведена схема широкополосного усилителя высокой частоты (УВЧ) на одном транзисторе, включенном по схеме с общей базой. В коллекторной цепи (нагрузка) включен LС-контур. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

Радиоэлементы для схемы на рис.1 (б):

  • R1=1к, R2=10к. R3=15к, R4=51 (для напряжения питания ЗВ-5В). R4=500-3 к (для напряжения питания 6В-15В);
  • С1=10-20, С2= 10-20, С3=1н, С4=1н-3н;
  • Т1 — кремниевые или германиевые ВЧ-транзисторы, например. КТ315. КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот УКВ-диапазона . Конденсаторы типа КЛС, КМ, КД и т.д.

Катушка L1 содержит 6-8 витков провода ПЭВ 0.51, латунные сердечники длиной 8 мм с резьбой М3, отвод от 1/3 части витков.

На рис.1 (в) приведена еще одна схема широкополосного УВЧ на одном транзисторе, включенном по схеме с общей базой. В коллекторной цепи включен ВЧ-дроссель. В зависимости от используемого транзистора данная схема может успешно применяться до частот в сотни мегагерц.

  • R1=1к, R2=33к, R3=20к, R4=2к (для напряжения питания 6В);
  • С1=1н, С2=1н, С3=10н, С4=10н-33н;
  • Т1 — кремниевые или германиевые ВЧ-транзисторы, например, КТ315, КТ3102, КТ368, КТ325, ГТ311 и т.д.

Значения конденсаторов и контура приведены для частот СВ-, КВ-диапазона. Для более высоких частот, например, для УКВ-диапазона, значения емкостей должны быть уменьшены. В этом случае могут быть использованы дроссели Д01.

Конденсаторы типа КЛС, КМ, КД и т.д.

Катушки L1 — дроссели, для СВ-диапазона это могут быть катушки на кольцах 600НН-8-К7х4х2, 300 витков провода ПЭЛ 0,1.

Большее значение коэффициента усиления может быть получено за счет применения многотранзисторных схем. Это могут быть различные схемы, например, выполненные на основе каскодного усилителя ОК-ОБ на транзисторах разной структуры с последовательным питанием. Один из вариантов такой схемы УВЧ приведен на рис.1 (г).

Данная схема УВЧ обладает значительным усилением (десятки и даже сотни раз), однако каскодные усилители не могут обеспечить значительное усиление на высоких частотах. Такие схемы, как правило, применяются на частотах ДВ- и СВ-диапазона. Однако при использовании транзисторов сверхвысокой частоты и тщательном исполнении такие схемы могут успешно применяться до частот в десятки мегагерц.

  • R1=33к, R2=33к, R3=39к, R4=1к, R5=91, R6=2,2к;
  • С1=10н, С2=100, С3=10н, С4=10н-33н. С5=10н;
  • Т1 -ГТ311, КТ315, КТ3102, КТ368, КТ325 и т.д.
  • Т2 -ГТ313, КТ361, КТ3107 и т.д.

Значения конденсаторов и контура приведены для частот СВ-диапазона. Для более высоких частот, например, для КВ-диапазона, значения емкостей и инду ктивность контура (число витков) должны быть соответствующим образом уменьшены.

Конденсаторы типа КЛС, КМ, КД и т.д. Катушка L1 — для СВ-диапазона содержит 150 витков провода ПЭЛШО 0.1 на каркасах 7 мм, подстроечники М600НН-3-СС2,8х12.

При настройке схемы на рис.1 (г) необходимо подобрать резисторы R1, R3 так, чтобы напряжения между эмиттерами и коллекторами транзисторов стали одинаковыми и составили 3В при напряжении питания схемы 9 В.

Использование транзисторных УВЧ позволяет усиливать радиосигналы. поступающие от антенн, в теледиапазонах — метровые и дециметровые волны. При этом наиболее часто применяются схемы антенных усилителей, построенные на основе схемы 1(а).

Пример схемы антенного усилителя для диапазона частот 150-210 МГц приведена на рис.2 (а).

Схема антенного усилителя МВ-диапазона

Рис.2.2. Схема антенного усилителя МВ-диапазона.

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470, R9=110, R10=75;
  • С1=15, С2= 1н, С3=15, С4=22, С5=15, С6=22, С7=15, С8=22;
  • Т1,Т2,ТЗ — 1Т311(Д,Л), ГТ311Д, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. Полосу частот данного антенного усилителя можно расширить в области низких частот соответствующим увеличением емкостей, входящих в состав схемы.

Радиоэлементы для варианта антенного усилителя для диапазона 50-210 МГц:

  • R1=47к, R2=470, R3= 110, R4=47к, R5=470, R6= 110. R7=47к, R8=470. R9=110, R10=75;
  • С 1=47, С2= 1н, С3=47, С4=68, С5=47, С6=68, С7=47, С8=68;
  • Т1,Т2,ТЗ — ГТ311А, ГТ341 или аналогичные.

Конденсаторы типа КМ, КД и т.д. При повторении данного устройства необходимо соблюдать все требования. предъявляемые к монтажу ВЧ-конструкций: минимальные длины соединяющих проводников, экранирование и т.д.

Антенный усилитель, предназначенный для использования в диапазонах телевизионных сигналов (и более высоких частот) может перегружаться сигналами мощных СВ-, КВ-, УКВ-радиостанций. Поэтому широкая полоса частот может быть неоптимальной, т.к. это может мешать нормальной работе усилителя. Особенно это сказывается в нижней области рабочего диапазона усилителя.

Для схемы приведенного антенного усилителя это может быть существенно, т.к. крутизна спада усиления в нижней части диапазона сравнительно низка.

Повысить крутизну амплитудно-частотной характеристики (АЧХ) данного антенного усилителя можно применением фильтра верхних частот 3-го порядка. Для этого на входе указанного усилителя можно применить дополнительную LС-цепь.

Схема подключения дополнительного LС-фильтра верхних частот к антенному усилителю приведена на рис. 2 (б).

Параметры дополнительного фильтра (ориентировочные):

  • С=5-10;
  • L — 3-5 витков ПЭВ-2 0,6. диаметр намотки 4 мм.

Настройку полосы частот и формы АЧХ целесообразно проводить с помощью соответствующих измерительных приборов (генератор качающейся частоты и т.д ). Форму АЧХ можно регулировать изменением величин емкостей С, С1, изменением шага между витками L1 и числа витков.

Используя описанные схемотехнические решения и современные высокочастотные транзисторы (сверхвысокочастотные транзисторы — СВЧ-транзисторы) можно построить антенный усилитель ДМВ-диапазона Этот усилитель можно использовать как с У КВ-радиоприемником, например, входящим в состав УКВ-радиостанции, или совместно с телевизором.

На рис.3 приведена схема антенного усилителя ДМВ-диапазона.

Схема антенного усилителя ДМВ-диапазона и схема подключения

Рис.3. Схема антенного усилителя ДМВ-диапазона и схема подключения.

Основные параметры усилителя ДМВ диапазона:

  • Полоса частот 470-790 МГц,
  • Усиление — 30 дБ,
  • Коэффициент шума -3 дБ,
  • Входное и выходное сопротивления — 75 Ом,
  • Ток потребления — 12 мА.

Одной из особенностей данной схемы является подача напряжения питания на схему антенного усилителя по выходному кабелю, по которому осуществляется подача выходного сигнала от антенного усилителя к приемнику радиосигнала — УКВ-радиоприемника, например, приемника УКВ-радиостанции или телевизора.

Антенный усилитель представляет собой два транзисторных каскада, включенных по схеме с общим эмиттером. На входе антенного усилителя предусмотрен фильтр верхних частот 3-го порядка, ограничивающий диапазон рабочих частот снизу. Это увеличивает помехозащищенность антенного усилителя.

  • R1 = 150к, R2=1 к, R3=75к, R4=680;
  • С1=3.3, С10=10, С3=100, С4=6800, С5=100;
  • Т1,Т2 — КТ3101А-2, КТ3115А-2, КТ3132А-2.
  • Конденсаторы С1,С2 типа КД-1, остальные — КМ-5 или К10-17в.
  • L1 — ПЭВ-2 0,8 мм, 2,5 витка, диаметр намотки 4 мм.
  • L2 — ВЧ-дроссель, 25 мкГн.
Читайте также:  Потеря мощности 402 двигателя

На рис.3 (б) приведена схема подключения антенного усилителя к антенному гнезду ТВ-приемника (к селектору ДМВ-диапазона) и к дистанционному источнику питания 12 В. При этом, как видно из схемы, питание на схему подается через коаксиальный кабель, используемый и для передачи усиленного ДМВ-радиосигнала от антенного усилителя к приемнику — УКВ-радиоприемнику или к телевизору.

Радиоэлементы подключения, рис.3 (б):

  • С5=100;
  • L3 — ВЧ-дроссель, 100 мкГн.

Монтаж выполнен на двустороннем стеклотекстолите СФ-2 навесным способом, длина проводников и площадь контактных площадок — минимальные, необходимо предусмотреть тщательное экранирование устройства.

Налаживание усилителя сводится к установке токов коллекторов транзисторов и регулируются при помощи R1 и RЗ, Т1 — 3.5 мА, Т2 — 8 мА; форму АЧХ можно регулировать подбором С2 в пределах 3-10 пФ и изменением шага между витками L1.

Литература: Рудомедов Е.А., Рудометов В.Е — Электроника и шпионские страсти-3.

Источник



ВЫСОКОЧАСТОТНЫЕ УСИЛИТЕЛИ НА МИКРОСХЕМАХ

Высокочастотные усилители предназначены для работы в области высоких и сверхвысоких частот, что предопределяет уникальность схемотехники их построения и особенности использования.

Для этой области частот характерно то, что любой проводник одновременно является индуктивностью, а паразитные емкостные связи возникают между любыми близкорасположенными элементами схемы.

Рис. 33.7. Цоколевка микросхемы МАХ4012

Рис. 33.2. Схема высокочастотного повторителя на микросхеме МАХ4012

Микросхемы МАХ4012, МАХ4016, МАХ4018, МАХ4020 фирмы Maxim содержат в своих корпусах, соответственно, 1, 2, 3 и 4 однотипных высокочастотных ОУ, см, например, рис. 33.1 [33.1, 33.2]. Эти усилители одновременно можно отнести к классу «Rail-to-Rail». Они могут работать при питании от однополярного источника напряжения 3,3—10 В или двуполярного ±(1,65—5) В.

Верхняя граничная частота усиления на уровне -3 дБ составляет для МАХ4012 200 МГц, для остальных микросхем этой серии — 150 МГц. Коэффициент усиления ОУ в низкочастотной области может доходить до 60 дБ.

Рис. 33.3. Схема неинвертирующего высокочастотного усилителя на микросхемах серии МАХ40хх

Основные закономерности и особенности включения низкочастотных ОУ, рассмотренных ранее, сохраняются и для области высоких частот, однако для техники высоких частот характерны и специфические особенности, рис. 33.2—33.4.

Ниже приведены типовые схемы включения микросхем серии МАХ40хх в качестве:

♦ повторителя напряжения (рис. 33.2);

♦ неинвертирующего усилителя (рис. 33.3);

♦ инвертирующего усилителя (рис. 33.4).

Коэффициент передачи этих устройств равен, соответственно, 1,

Рис. 33.5. Схема высокочастотного усилителя на микросхемах серии МАХ40хх, работающего на емкостную нагрузку

Рис. 33.4. Схема инвертирующего высокочастотного усилителя на микросхемах серии МАХ40хх

На рис. 33.5 показан пример реализации ВЧ усилителя на микросхемах серии МАХ40хх, работающего на емкостную нагрузку.

Предполагается, что величина емкости нагрузки находится в диапазоне 20—250 пФ.

Микросхема МАХ4005 фирмы MAXIM (рис. 33.6) предназначена для работы в качестве широкополосного высокочастотного буферного каскада в полосе частот до 950 МГц (на уровне -3 дБ) и 2000 МГц (на уровне -6 дБ).

Рис. 33.6. Схема высокочастотного широкополосного буферного каскада на микросхеме МАХ4005

Входная емкость — 2,2 пФ. Сопротивление нагрузки — 75 Ом. Напряжение питания ±5,0 В, ±10 %. Предельная рассеиваемая мощность — 470 мВт. Предельное входное напряжение может достигать ±2,5 В. Ток, потребляемый микросхемой от положительного источника питания, — 9—19 мА (типовое значение 14 мА), от отрицательного — 9—14 (11) мА.

Микросхемы AD830 (рис. 33.7—33.9) в типовом включении способны работать в полосе частот до 40 МГц при питании от источников напряжения ±5 В и до 200 МГц при ±15 В.

Рис. 33.7. Схема безрезисторного широкополосного усилителя на микросхеме AD830 с коэффициентом передачи 2

Внутренне строение этой микросхемы приведено нами ранее, см. гл. 12, рис. 12.7.

Рис. 33.8. Схема широкополосного повторителя напряжения на микросхеме AD830

Рис. 33.9. Вариант включения микросхемы AD830 в качестве широкополосного повторителя напряжения

Микросхемы серии MSA-0186, MSA-0286, MSA-0486, MSA-0686, MSA-0786, MSA-0886 фирмы Hewlett Packard предназначены для использования в качестве широкополосных ВЧ усилителей. Так, например, микросхема ВЧ усилителя MSA-0686 работает при напряжении питания 3,5 В (2,8—4,2 В), рис. 33.10. Типовой коэффициент усиления в полосе частот до 500 МГц 18,5 дБ при коэффициенте шума до 3 дБ. Предельная частота усиления на уровне —3 дБ 800 МГц. Микросхема сохраняет способность усиливать сигналы (Кус > 1) до частоты 6 ГГц. Входное/выходное сопротивление 50 Ом. Потребляемый ток 50 мА, рассеиваемая мощность до 200 мВт.

Микросхемы TSH690, TSH691 предназначены для работы в качестве широкополосного ВЧ усилителя, работающего в полосе частот 40—1000 МГц. В состав микросхемы входит двухкаскадный усилитель, напряжение питания на каждый из каскадов и на цепи смещения Vbias задается раздельно и в пределе может достигать 5,5 В, рис. 33.11.

Потребляемый ток — 46 мА. Напряжение в цепи смещения Vbjas определяет уровень выходной мощности (коэффициент передачи) усилителя

Рис.33.11. Внутреннее строение и цоколевка микросхем TSH690, TSH691

Рис. 33.12. Типовая схема включения микросхем TSH690, TSH691 в качестве усилителя в полосе частот 300— 7000 МГц

и может регулироваться в пределах 0—5,5 (6,0) В. Коэффициент передачи микросхемы TSH690 (TSH691) при напряжении смещения Vbias=2,7 В и сопротивлении нагрузки 50 Ом в полосе частот до 450 МГц составляет 23(43) дБ, до 900(950) МГц — 17(23) дБ.

Практическая схема включения микросхем TSH690, TSH691 приведена на рис. 33.12. Рекомендуемые номиналы элементов: С1=С5=100— 1000 пФ; С2=С4=1000 пФ; С3=0,01 мкФ; L1 150 нГн; L2 56 нГн для частот не свыше 450 МГц и 10 нГн для частот до 900 МГц. Резистором R1 можно регулировать уровень выходной мощности (можно использовать для системы автоматической регулировки выходной мощности).

Широкополосный усилитель INA50311 (рис. 33.13), производимый фирмой Hewlett Packard, предназначен для использования в аппаратуре подвижной связи, а также в бытовой радиоэлектронной аппаратуре, например, в качестве антенного усилителя или усилителя радиочастоты. Рабочий диапазон усилителя 50—2500 МГц. Напряжение питания — 5 В при потребляемом токе до 17 мА. Усредненный коэффициент усиления

Рис. 33.13. Схема внутреннего строения микросхемы ΙΝΑ50311

10 дБ. Максимальная мощность сигнала, подводимого к входу на частоте 900 МГц, не более 10 мВт. Коэффициент шума 3,4 дБ.

Типовая схема включения микросхемы ΙΝΑ50311 при питании от стабилизатора напряжения 78LO05 приведена на рис. 33.14.

Рис. 33.14. Схема широкополосного усилителя на микросхеме INA50311

Шустов М. А., Схемотехника. 500 устройств на аналоговых микросхемах. — СПб.: Наука и Техника, 2013. —352 с.

Источник

Adblock
detector