Меню

Стабилизаторы тока для светодиодов 220 вольт

Стабилизатор тока светодиода

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность — когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания — соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока — на одном транзисторе (схема «а»). Поскольку транзистор — это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h 21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема «б»). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью «в» и «г». Резистор R в схеме выполняет роль обратной связи — при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема «г», при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема «д»). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства — готовые стабилизаторы с фиксированным током, собранные по такой схеме — CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент — при увеличении температуры, ток через светодиоды снижается.

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении — снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент — дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях — включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале — равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

Читайте также:  Стойка стабилизатора ниссан альмера классик в10

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC — LC фильтр (схема «б»), то, благодаря «специфическим» свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством — ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно — так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode — CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode — BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции — с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом — широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Еще одна схема импульсного преобразователя работает аналогично — когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема «а») передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически — это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема «б») передаёт энергию от источника в нагрузку во время выключенного состояния.

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически — это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой — Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Читайте также:  Стабилизаторы эра страна производитель

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования — контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля — включается. Эффективность устройства достигает 94%.

Источник

Самодельный драйвер для светодиодов от сети 220В

Преимущества светодиодных лап рассматривались неоднократно. Обилие положительных отзывов пользователей светодиодного освещения волей-неволей заставляет задуматься о собственных лампочках Ильича. Все было бы неплохо, но когда дело доходит до калькуляции переоснащения квартиры на светодиодное освещения, цифры немного «напрягают».

Для замены обыкновенной лампы на 75Вт идёт светодиодная лампочка на 15Вт, а таких ламп надо поменять десяток. При средней стоимости около 10 долларов за лампу бюджет выходит приличный, да и еще нельзя исключить риск приобретения китайского «клона» с жизненным циклом 2-3 года. В свете этого многие рассматривают возможность самостоятельного изготовления этих девайсов.

Теория питания светодиодных ламп от 220В

Самый бюджетный вариант можно собирать своими руками из вот таких светодиодов. Десяток таких малюток стоит меньше доллара, а по яркости соответствует лампе накаливания на 75Вт. Собрать всё воедино не проблема, вот только напрямую в сеть их не подключишь – сгорят. Сердцем любой светодиодной лампы является драйвер питания. От него зависит, насколько долго и хорошо будет светить лампочка.

Что бы собрать светодиодную лампу своими руками на 220 вольт, разберёмся в схеме драйвера питания.

Параметры сети значительно превышают потребности светодиода. Что бы светодиод смог работать от сети требуется уменьшить амплитуду напряжения, силу тока и преобразовать переменное напряжение сети в постоянное.

Для этих целей используют делитель напряжения с резисторной либо ёмкостной нагрузкой и стабилизаторы.

Компоненты диодного светильника

Схема светодиодной лампы на 220 вольт потребует минимальное количество доступных компонентов.

  • Светодиоды 3,3В 1Вт – 12 шт.;
  • керамический конденсатор 0,27мкФ 400-500В – 1 шт.;
  • резистор 500кОм — 1Мом 0,5 — 1Вт – 1 ш.т;
  • диод на 100В – 4 шт.;
  • электролитические конденсаторы на 330мкФ и 100мкФ 16В по 1 шт.;
  • стабилизатор напряжения на 12В L7812 или аналогичный – 1шт.

Изготовление драйвера светодиодов на 220В своими руками

Схема лед драйвера на 220 вольт представляет собой не что иное, как импульсный блок питания.

В качестве самодельного светодиодного драйвера от сети 220В рассмотрим простейший импульсный блок питания без гальванической развязки. Основное преимущество таких схем – простота и надёжность. Но будьте осторожны при сборке, поскольку у такой схемы нет ограничения по отдаваемому току. Светодиоды будут отбирать свои положенные полтора ампера, но если вы коснётесь оголённых проводов рукой, ток достигнет десятка ампер, а такой удар тока очень ощутимый.

Схема простейшего драйвера для светодиодов на 220В состоит их трёх основных каскадов:

  • Делитель напряжения на ёмкостном сопротивлении;
  • диодный мост;
  • каскад стабилизации напряжения.

Первый каскад – ёмкостное сопротивление на конденсаторе С1 с резистором. Резистор необходим для саморазрядки конденсатора и на работу самой схемы не влияет. Его номинал не особо критичен и может быть от 100кОм до 1Мом с мощностью 0,5-1 Вт. Конденсатор обязательно не электролитический на 400-500В (эффективное амплитудное напряжение сети).

При прохождении полуволны напряжения через конденсатор, он пропускает ток, пока не произойдет заряд обкладок. Чем меньше его ёмкость, тем быстрее происходит полная зарядка. При ёмкости 0,3-0,4мкФ время зарядки составляет 1/10 периода полуволны сетевого напряжения. Говоря простым языком, через конденсатор пройдет лишь десятая часть поступающего напряжения.

Второй каскад – диодный мост. Он преобразует переменное напряжение в постоянное. После отсечения большей части полуволны напряжения конденсатором, на выходе диодного моста получаем около 20-24В постоянного тока.

Третий каскад – сглаживающий стабилизирующий фильтр.

Конденсатор с диодным мостом выполняют функцию делителя напряжения. При изменении вольтажа в сети, на выходе диодного моста амплитуда так же будет меняться.

Что бы сгладить пульсацию напряжения параллельно цепи подключаем электролитический конденсатор. Его ёмкость зависит от мощности нашей нагрузки.

В схеме драйвера питающее напряжение для светодиодов не должно превышать 12В. В качестве стабилизатора можно использовать распространённый элемент L7812.

Собранная схема светодиодной лампы на 220 вольт начинает работать сразу, но перед включением в сеть тщательно изолируйте все оголённые провода и места пайки элементов схемы.

Вариант драйвера без стабилизатора тока

В сети существует огромное количество схем драйверов для светодиодов от сети 220В, которые не имеют стабилизаторов тока.

Проблема любого безтрансформаторного драйвера – пульсация выходного напряжения, следовательно, и яркости светодиодов. Конденсатор, установленный после диодного моста, частично справляется с этой проблемой, но решает её не полностью.

На диодах будет присутствовать пульсация с амплитудой 2-3В. Когда мы устанавливаем в схему стабилизатор на 12В, даже с учётом пульсации амплитуда входящего напряжения будет выше диапазона отсечения.

Диаграмма напряжения в схеме без стабилизатора

Диаграмма в схеме со стабилизатором

Поэтому драйвер для диодных ламп, даже собранный своими руками, по уровню пульсации не будет уступать аналогичным узлам дорогих ламп фабричного производства.

Как видите, собрать драйвер своими руками не представляет особой сложности. Изменяя параметры элементов схемы, мы можем в широких пределах варьировать значения выходного сигнала.

Если у вас возникнет желание на основе такой схемы собрать схему светодиодного прожектора на 220 вольт, лучше переделать выходной каскад под напряжение 24В с соответствующим стабилизатором, поскольку выходной ток у L7812 1,2А, это ограничивает мощность нагрузки в 10Вт. Для более мощных источников освещения требуется либо увеличить количество выходных каскадов, либо использовать более мощный стабилизатор с выходным током до 5А и устанавливать его на радиатор.

Источник



Стабилизатор тока для светодиодов

Ни для кого не секрет, что светодиодные лампы периодически перегорают, несмотря на продолжительные гарантийные сроки. У таких ламп имеются определенные параметры, требующие обязательной стабилизации. Это сила тока в самой лампе и падение напряжения в питающей сети. Для решения этой проблемы используется стабилизатор тока для светодиодов. Но, не все стабилизаторы могут решить поставленную задачу. Поэтому в некоторых случаях рекомендуется изготавливать стабилизатор своими руками. Прежде чем приступать к этому процессу следует разобраться в назначении, устройстве и принципе работы стабилизатора, чтобы не допустить ошибок при сборке схемы.

  1. Назначение стабилизатора
  2. Стабилизирующие устройства линейного типа
  3. Импульсные стабилизаторы тока
  4. Драйвер питания светодиодов
Читайте также:  Ибп со стабилизатором для компьютера

Назначение стабилизатора

Основной функцией стабилизатора является выравнивание тока, независимо от перепадов напряжения в электрической сети. Всего существует два типа стабилизирующих устройств – линейные и импульсные. В первом случае осуществляется регулировка всех выходных параметров путем распределения мощности между нагрузкой и собственным сопротивлением.

Стабилизатор тока для светодиодов

Второй вариант значительно эффективнее, поскольку в этом случае на светодиоды поступает лишь необходимое количество мощности. Действие таких стабилизаторов основано на принципе широтно-импульсной модуляции.

У импульсных стабилизаторов более высокий коэффициент полезного действия, составляющий не менее 90%. Однако у них довольно сложная схема и соответственно высокая стоимость по сравнению с приборами линейного типа. Следует отметить, что использование стабилизаторов LM317 допустимо только для линейных схем. Они не могут включаться в цепи с большими значениями токов. Именно поэтому данные устройства наилучшим образом подходят для совместного использования со светодиодами.

Необходимость использования стабилизаторов объясняется особенностями параметров светодиодов. Они отличаются нелинейной вольтамперной характеристикой, когда изменение напряжения на светодиоде приводит к непропорциональному изменению тока. С увеличением напряжения, возрастание тока в самом начале происходит очень медленно, поэтому свечения не наблюдается. Далее, когда напряжение достигает порогового значения, начинается излучение света с одновременным быстрым возрастанием тока. Если напряжение продолжает увеличиваться, в этом случае происходит еще большее возрастание тока, что приводит к сгоранию светодиода.

Характеристики светодиодов отражают значение порогового напряжения в виде прямого напряжения при номинальном токе. Показатель номинального тока для большинства светодиодов малой мощности составляет 20 мА. Мощные светодиоды требуют более высокого номинального тока, достигающего 350 мА и выше. Они выделяют большое количество тепла и устанавливаются на специальные теплоотводы.

Для того чтобы обеспечить нормальную работу светодиодов, питание к ним должно подключаться через стабилизатор тока. Это связано с разбросом порогового напряжения. То есть, различные типы светодиодов отличаются разным прямым напряжением. Даже у однотипных ламп может быть не одинаковое прямое напряжение, причем не только его минимальное, но и максимальное значение.

Таким образом, если подключить параллельно два светодиода к одному и тому же источнику, то они будут пропускать через себя совершенно разный ток. Различие токов приводит к преждевременному выходу их из строя или мгновенному перегоранию. Чтобы избежать подобных ситуаций, светодиоды рекомендуется включать совместно со стабилизирующими устройствами, предназначенные для выравнивания тока и доведения его до определенной, заданной величины.

Стабилизирующие устройства линейного типа

С помощью стабилизатора выполняется установка тока, проходящего через светодиод, с заданным значением, не зависящим от напряжения, приложенного к схеме. Если напряжение превысит пороговый уровень, ток все равно останется прежним и не будет изменяться. В дальнейшем, когда общее напряжение увеличится, его рост произойдет лишь на стабилизаторе тока, а на светодиоде оно останется неизменным.

Таким образом, при неизменных параметрах светодиода, стабилизатор тока может называться стабилизатором его мощности. Распределение активной мощности, выделяемой устройством в виде тепла, происходит между стабилизатором и светодиодом пропорционально напряжению на каждом из них. Данный тип стабилизатора получил название линейного.

Нагрев линейного стабилизатора тока возрастает вместе с ростом приложенного к нему напряжения. Это является его основным недостатком. Тем не менее, это устройство обладает рядом преимуществ. Во время работы отсутствуют электромагнитные помехи. Конструкция очень простая, что делает изделие достаточно дешевым в большинстве схем.

Существуют такие области применения, в которых линейный стабилизатор тока для светодиодов на 12 В становится более эффективным, по сравнению с импульсным преобразователем, особенно когда напряжение на входе лишь незначительно выше напряжения на светодиоде. Если питание осуществляется от сети, в схеме может использоваться трансформатор, к выходу которого подключается линейный стабилизатор.

Таким образом, вначале напряжение снижается до такого же уровня, как и в светодиоде, после чего линейный стабилизатор устанавливает необходимое значение тока. Другой вариант предполагает приближение напряжения светодиода к питающему напряжению. С этой целью выполняется последовательное соединение светодиодов в общую цепочку. В результате, общее напряжение в цепи составит сумму напряжений каждого светодиода.

Некоторые стабилизаторы тока могут быть выполнены на полевом транзисторе, с использованием р-п-перехода. Ток стока устанавливается с помощью напряжения затвор-исток. Ток, проходящий через транзистор, такой же, как и начальный ток стока, указанный в технической документации. Значение минимального рабочего напряжения такого устройства зависит от транзистора и составляет порядка 3 В.

Импульсные стабилизаторы тока

К более экономичным устройствам относятся стабилизаторы тока, основой которых является импульсный преобразователь. Данный элемент известен еще, как ключевой преобразователь или конвертер. Внутри преобразователя мощность прокачивается определенными порциями в виде импульсов, что и определило его название. В нормально работающем устройстве потребление мощности происходит непрерывно. Она непрерывно передается между входной и выходной цепями и также непрерывно поступает в нагрузку.

В электрических схемах стабилизатор тока и напряжения на основе импульсных преобразователей имеет практически одинаковый принцип действия. Единственным отличием является контроль над током через нагрузку, вместо напряжения на нагрузке. Если ток в нагрузке снижается, стабилизатор осуществляет подкачку мощности. В случае увеличения – выполняется снижение мощности. Это позволяет создавать стабилизаторы тока для мощных светодиодов.

В наиболее распространенных схемах дополнительно имеется реактивный элемент, называемый дросселем. От входной цепи на него определенными порциями поступает энергия, которая в дальнейшем передается на нагрузку. Такая передача происходит через коммутатор или ключ, находящийся в двух основных состояниях – выключенном и включенном. В первом случае ток не проходит, а мощность не выделяется.

Во втором случае ключ проводит ток, обладая при этом очень малым сопротивлением. Поэтому выделяемая мощность также близка нулю. Таким образом, передача энергии происходит практически без потерь мощности. Однако импульсный ток считается нестабильным и для его стабилизации используются специальные фильтры.

Наряду с явными преимуществами, импульсный преобразователь обладает серьезными недостатками, устранение которых требует специфических конструктивных и технических решений. Эти устройства отличаются сложностью конструкции, они создают электромагнитные и электрические помехи. Они затрачивают определенное количество энергии для собственной работы и в результате нагреваются. Их стоимость существенно выше, чем у линейных стабилизаторов и трансформаторных устройств.

Тем не менее, большинство недостатков успешно преодолеваются, поэтому импульсные стабилизаторы пользуются широкой популярностью у потребителей.

Источник