Меню

Среднее напряжение от 6 квт до 10 квт

Определение тарифного уровня напряжения при непосредственном техприсоединении потребителя электроэнергии к сетям ТСО

  1. договора с энергосбытовой организацией (ЭСО) на продажу электрической энергии и мощности по типу «энергоснабжения»
  2. договора с территориальной сетевой организацией (ТСО) на оказание услуг по передаче электрической энергии

требуется определить тарифный уровень (диапазон, класс) напряжения (ТУН), на котором подключён потребитель электроэнергии к сетям ТСО, так как по тарифному уровню напряжения, идентифицируется величина тарифа на передачу электроэнергии или величина предельных уровней нерегулируемых цен на электроэнергию, включающих в себя тариф на передачу электроэнергии.

По моему мнению, при идентификации тарифного уровня (диапазона) напряжения, предопределяющего размер тарифа на услуги по передаче, необходимо учитывать следующие обстоятельства:

  1. Понятия «уровень напряжения» и «напряжения» — это разные понятия
  2. Понятия «фактический уровень напряжения» и «фактическое напряжение» — это разные понятия
  3. При определении фактического уровня напряжения необходимо учитывать, где находится граница балансовой принадлежности (далее по тексту – ГБП): на «источнике питания» или нет?
  4. Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении энергопринимающих устройств (далее по тексту – ЭПУ) потребителя к объектам электросетевого хозяйства ТСО

Понятия «уровень напряжения» и «напряжения» — это разные понятия

«Напряжение» – это техническая характеристика энергоустановки, оно указывает, для приёма какого напряжения предназначена ЭПУ. Измеряется в вольтах (В) или киловольтах (кВ). Предопределяется техническими условиями, проектом на ЭПУ. Первично, как правило, напряжение фиксируется в документах о технологическом присоединении, чаще всего – в актах разграничения балансовой принадлежности. В нашей стране ЭПУ предназначаются для приёма следующего «напряжения»:

  1. 0,4 кВ
  2. 1 кВ
  3. 6 кВ
  4. 10 кВ
  5. 20 кВ
  6. 35 кВ
  7. 110 кВ
  8. 150 кВ
  9. 220 кВ и выше

«Уровень напряжения» (иногда «диапазон напряжения» или «тарифный уровень напряжения», или «тарифный уровень (диапазон) напряжения») – это понятие, используемое:

1. в тарифном регулировании – при установлении тарифов на передачу электроэнергии

2. в применении тарифов на передачу электроэнергии в расчётах за услуги по передаче электроэнергии

По «уровням напряжения» тарифы дифференцируются, то есть различаются по величине. Чем выше «уровень напряжения», тем ниже величина тарифа. Поэтому потребители стремятся подтвердить наиболее высокий «уровень напряжения».

Понятие «уровень напряжения» в нормативно-правовых актах (далее по тексту – НПА) появляется и используется в контексте тарифообразования и тарифоприменения.

Согласно пункта 48 Правил недискриминационногодоступа к услугам по передаче электрической энергии и оказания этих услуг,утверждённых Постановлением Правительства РФ № 861 от 27.12.2004г., (далее по тексту — ПНД) «тарифы на услуги по передаче электрической энергии устанавливаются в соответствии с Основами ценообразования в области регулируемых цен (тарифов) в электроэнергетике и Правилами государственного регулирования (пересмотра, применения) цен (тарифов) в электроэнергетике, с учетом пункта 42 настоящих Правил»

В соответствии с пунктом 42 ПНД «при установлении тарифов на услуги по передаче электрической энергии ставки тарифов определяются с учетом необходимости обеспечения равенства единых (котловых) тарифов на услуги по передаче электрической энергии для всех потребителей услуг, расположенных на территории соответствующего субъекта Российской Федерации и принадлежащих к одной группе (категории) из числа тех, по которым законодательством Российской Федерации предусмотрена дифференциация тарифов на электрическую энергию (мощность)».

Дифференциация тарифов на передачу электроэнергии по « уровням напряжения» установлена следующими НПА:

  • Основами ценообразования в области регулируемых цен (тарифов) в электроэнергетике, утвержденными Постановлением Правительства РФ от 29.12.2011 № 1178 «О ценообразовании в области регулируемых цен (тарифов) в электроэнергетике» (далее по тексту – Основы ценообразования)
  • Методическими указаниями по расчету регулируемых тарифов и цен на электрическую (тепловую) энергию на розничном (потребительском) рынке, утверждённых Приказом Федеральной службы по тарифам от 6 августа 2004 г. N 20-э/2 (далее по тексту – Двадцатая методика):

Пункт 81(1) Основ ценообразования гласит: «Единые (котловые) тарифы дифференцируются по следующим « уровням напряжения»:

  • высокое напряжение (ВН) — объекты электросетевого хозяйства (110 кВ и выше);
  • среднее первое напряжение (СН1) — объекты электросетевого хозяйства (35 кВ);
  • среднее второе напряжение (СН2) — объекты электросетевого хозяйства (20 — 1 кВ);
  • низкое напряжение (НН) — объекты электросетевого хозяйства (ниже 1 кВ).»

Пункт 44 Двадцатой методики устанавливает: «Размер тарифа на услуги по передаче электрической энергии рассчитывается в виде экономически обоснованной ставки, которая в свою очередь дифференцируется по четырем «уровням напряжения»:

  • на высоком напряжении: (ВН) 110 кВ и выше;
  • на среднем первом напряжении: (СН1) 35 кВ;
  • на среднем втором напряжении: (СН 11) 20 — 1 кВ;
  • на низком напряжении: (НН) 0,4 кВ и ниже»

Из указанных пунктов НПА также видно, что каждый «уровень напряжения» имеет свои напряжения, которые к нему относятся:

  1. к уровню напряжения — высокое напряжение (ВН) относятся напряжения от 110кВ и выше (т.е. 150кВ и т.д.)
  2. к уровню напряжения — среднее первое напряжение (СН1) относится только одно напряжение — 35 кВ
  3. к уровню напряжения – среднее второе напряжение (СН2) относятся напряжения, значения которых попадают в диапазон: 20-1 кВ, т.е. — это 1 кВ, 6 кВ, 10 кВ, 20 кВ и др.
  4. к уровню напряжения – низкое напряжение (НН) относятся напряжения, значения которых 0,4 кВ и ниже (например, 220 В, 150 В и др.)

По уровням напряжения также дифференцируются предельные уровни нерегулируемых цен на электроэнергию, включающие в себя тариф на передачу электроэнергии. Это можно увидеть из формы публикации данных о предельных уровнях нерегулируемых цен на электрическую энергию (мощность) и составляющих предельных уровней нерегулируемых цен на электрическую энергию (мощность), установленной Приложением к Правилам определения и применения гарантирующими поставщиками нерегулируемых цен на электрическую энергию (мощность), утверждённым Постановлением Правительства РФ от 29.12.2011 № 1179 «Об определении и применении гарантирующими поставщиками нерегулируемых цен на электрическую энергию (мощность)» (далее по тексту — Правила определения нерегулируемых цен)

Читайте также:  Формула максимального напряжения тока

Таким образом, понятия «напряжение» и «уровень напряжения» не тождественны. Это разные понятия. Но их часто путают, особенно при определении величины тарифа на передачу электроэнергии, по которому подлежит оплата оказанных территориальными сетевыми организациями (далее по тексту – ТСО) услуг по передаче. Это происходит ещё из-за того, что путаются понятия «фактический уровень напряжения» и «фактическое напряжение».

Понятия «фактический уровень напряжения» и «фактическое напряжение» — это разные понятия

Для определения величины тарифа на передачу электроэнергии важно установить на каком «фактическом уровне напряжения» подключён потребитель электроэнергии. Не на каком « фактическом напряжении», а на каком « фактическом УРОВНЕ напряжения». Это не одно и тоже.

Эти понятия становятся, практически тождественными при ситуации, когда граница балансовой принадлежности потребителя находится НЕ на ИСТОЧНИКЕ ПИТАНИЯ.

В этом случае за « напряжение», относящееся к соответствующему « уровню напряжения», принимают « фактическое напряжение» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.

То есть «фактическое напряжение» ЭПУ совпадает с «напряжением», которое относится к тому или иному «уровню напряжению». « Фактическое напряжение» ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО ПРЕДОПРЕДЕЛЯЕТ «фактический УРОВЕНЬ напряжения», используемый для выбора величины тарифа на передачу электроэнергии.

Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится НЕ на источнике питания, то напряжение, относящееся к соответствующему « уровню напряжения», будет тоже 6 кВ. Поэтому, «уровень напряжения» будет «средним вторым» (СН2), так как напряжение ЭПУ полностью совпадает с напряжением, относящимся ко второму «уровню напряжения» (СН2). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: напряжения ЭПУ и напряжения, относящегося к соответствующему « уровню напряжения».

Далее, исходя из «фактического уровня напряжения», по тарифному меню ТСО, определяем величину тарифа на передачу электроэнергии, соответствующую уровню напряжения — среднее второе напряжение (СН2).

Совсем иная ситуация, когда граница балансовой принадлежности потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ.

При определении фактического уровня напряжения необходимо учитывать, где находится граница балансовой принадлежности: на «источнике питания» или нет?

Когда ГБП потребителя находится на ИСТОЧНИКЕ ПИТАНИЯ, определение «фактического уровня напряжения», на котором подключены ЭПУ потребителя к объектам электросетевого хозяйства ТСО, производится НЕ по фактическому напряжению ЭПУ потребителя, а по фактическому значению питающего (высшего) «напряжения» центра питания (подстанции).

То есть «фактический уровень напряжения» ПРЕДОПРЕДЕЛЯЕТСЯ фактическим питающим (высшим) напряжением источника питания, а не фактическим напряжением ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО. В такой ситуации для нас важно не какое фактическое напряжение ЭПУ потребителя, а какое фактическое питающее (высшее) напряжение источника питания. Напряжение ЭПУ потребителя, в этом случае вообще не участвует в определении «фактического уровня напряжения», на котором подключены ЭПУ потребителя к объектам электросетевого хозяйства ТСО, используемого в дальнейшем для выбора величины тарифа на передачу электроэнергии.

Теперь мы должны:

1. соотносить фактическое питающее (высшее) «напряжение» источника питания с «напряжением», относящимся к соответствующему « уровню напряжения»

2. определять «фактический уровень напряжения» по совпадению этих двух напряжений.

Например, если у вас «фактическое напряжение» ЭПУ в точке подключения к объектам электросетевого хозяйства ТСО составляет 6кВ, и эта точка подключения находится на источнике питания, то мы забываем про «фактическое напряжение» ЭПУ.

Сразу же переходим к определению фактического питающего (высшего) напряжение источника питания. Смотрим, что у нас за источник питания? какое высшее напряжение приходит на него? Допустим, у нас источник питания – это подстанция 110/6кВ. Это означает, что на таком источнике питания происходит преобразование напряжения (трансформация) со 110 кВ на 6 кВ. Отсюда, фактическим питающим (высшим) напряжением источника питания является напряжение 110 кВ.

А раз фактическое питающее (высшее) напряжение источника питания составляет 110 кВ, то напряжение, относящееся к соответствующему « уровню напряжения», будет тоже 110 кВ. Поэтому, «фактический уровень напряжения» будет «высоким напряжением» (ВН), так как фактическое питающее (высшее) напряжение источника питания полностью совпадает с напряжением, относящимся к высокому «уровню напряжения» (ВН). Отсюда, ваш «фактический уровень напряжения», на котором подключены ваши ЭПУ к объектам электросетевого хозяйства ТСО, будет полностью определяться указанным выше совпадением «напряжений»: питающего (высшего) напряжения источника питания и напряжения, относящегося к соответствующему « уровню напряжения».

Таким образом, из сказанного следует, что для определения «фактического уровня напряжения» предопределяющего величину тарифа на передачу электроэнергии, сначала необходимо устанавливать, где находится граница балансовой принадлежности:

  1. Не на источнике питания
  2. Или на источнике питания

В первом случае, за напряжение, относящееся к соответствующему « уровню напряжения», надо принимать фактическое напряжение ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО.

Во второму случае, за напряжение, относящееся к соответствующему « уровню напряжения», надо принимать фактическое питающее (высшее) напряжение источника питания, на котором находится ГБП потребителя.

Это вытекает из следующих НПА:

абзац 3 пункта 15(2) ПНД гласит: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств. потребителя. установлена на объектах. на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов. »

Читайте также:  Стабилизатор напряжения эра sta 10000 производитель

пункт 45 Двадцатой методики устанавливает: «При расчете тарифа на услуги по передаче электрической энергии за уровень напряжения принимается значение питающего (высшего) напряжения центра питания (подстанции) независимо от уровня напряжения, на котором подключены электрические сети потребителя (покупателя, ЭСО), при условии, что граница раздела балансовой принадлежности электрических сетей рассматриваемой организации и потребителя (покупателя, ЭСО) устанавливается на: выводах проводов из натяжного зажима портальной оттяжки гирлянды изоляторов воздушных линий (ВЛ), контактах присоединения аппаратных зажимов спусков ВЛ, зажимах выводов силовых трансформаторов со стороны вторичной обмотки, присоединении кабельных наконечников КЛ в ячейках распределительного устройства (РУ), выводах линейных коммутационных аппаратов, проходных изоляторах линейных ячеек, линейных разъединителях»

На основе всего выше сказанного, можно построить ниже приведённую матрицу определения «фактического уровня напряжения», применяемого в дальнейшем для идентификации величины тарифа на услуги по передаче электроэнергии:

Из этой матрицы наглядно видно:

1. как будет меняться «фактический уровень напряжения» в зависимости от того где находится граница балансовой принадлежности: на источнике питания или нет

2. как «фактический уровень напряжения» зависит или НЕ зависит от фактического напряжения ЭПУ потребителя в точке подключения к объектам электросетевого хозяйства ТСО. В первом случае напрямую зависит, во втором никак не зависит.

Алгоритм определения применяемой для расчётов величины тарифа на передачу электроэнергии, при непосредственном подключении ЭПУ потребителя к объектам электросетевого хозяйства ТСО

Описанная выше логика, нам нужна, чтобы решить всего одну следующую задачу:

Идентифицировать величину тарифа на передачу электроэнергии, для дальнейшего его применения в расчётах между ТСО и потребителем услуг по передаче электроэнергии в рамках договора энергоснабжения с энергосбытовой организацией (далее по тексту – ЭСО) или в рамках прямого договора оказания услуг по передаче электроэнергии с ТСО.

Целевой результат выполнения данной задачи: Правильно идентифицированная по тарифному меню ТСО величина тарифа на передачу электроэнергии.

Решается эта задача по следующему алгоритму:

Приведённый выше алгоритм касается только той ситуации, когда энергопринимающие устройства потребителя непосредственно подключены к объектам электросетевого хозяйства ТСО, и к ним применяются:

1. для ситуации когда « ГБП на источнике питания» положения абзаца 3 пункта 15(2) ПНД: «если граница раздела балансовой принадлежности объектов электросетевого хозяйства сетевой организации и энергопринимающих устройств. потребителя. установлена на объектах. на которых происходит преобразование уровней напряжения (трансформация), принимается уровень напряжения, соответствующий значению питающего (высшего) напряжения указанных объектов. »

2. для ситуации когда « ГБП НЕ на источнике питания» положения части первой абзаца 5 пункта 15(2) ПНД, которые звучат так: «в иных случаях принимается уровень напряжения, на котором подключены энергопринимающие устройства и (или) иные объекты электроэнергетики потребителя электрической энергии (мощности)»

Источник

Номинальные напряжения электрических сетей и области их применения

Номинальные напряжения электрических сетей и области их применения Номинальным напряжением U н источников и приемников электроэнергии (генераторов, трансформаторов) называется такое напряжение, на которое они рассчитаны в условиях нормальной работы.

Номинальные напряжения электрических сетей и присоединяемых к ним источников и приемников электрической энергии устанавливаются ГОСТом.

Шкала номинальных напряжений для сетей переменного тока частотой 50 Гц междуфазное напряжение должно быть 12, 24, 36, 42, 127, 220, 380 В; 3, 6, 10, 20, 35, 110, 150, 220, 330, 500, 750, 1150 кВ, для сетей постоянного тока -12, 24, 36, 48, 60, 110, 220, 440, 660, 3000 В.

Для электрических сетей трехфазного переменного тока напряжением до 1 кВ и присоединенным к ним источников и приемников электроэнергии ГОСТ 721-78 устанавливает следующие значения номинальных напряжений:

Сети и приемники — 380/220 В; 660/380 В

Источники — 400/230 В; 690/400 В.

Номинальное напряжение генераторов с целью компенсации потери напряжения в питаемой ими сети принимается на 5% больше номинального напряжения этой сети (см. табл. 1).

Номинальные напряжения первичных обмоток, повышающих трансформаторов, присоединяемых к генераторам, приняты также на 5% больше номинальных напряжений подключаемых к ним линий.

Первичные обмотки понижающих трансформаторов имеют номинальные напряжения, равные номинальным напряжениям питающих их линий.

В табл. 1. приведены номинальные и наибольшие рабочие напряжения электрических сетей, генераторов и трансформаторов напряжением выше 1 кВ, принятые ГОСТ 721 — 78.

Таблица 1.1. Номинальные напряжения трехфазного тока, кВ

Сети и приемники Трансформаторы и автотрансформаторы Наибольшее рабочее напряжение
без РПН c РПН
первичные обмотки вторичные обмотки первичные обмотки вторичные обмотки
6 6 и 6,3 6,3 и 6,6 6 и 6,3 6,3 и 6,6 7,2
10 10 и 10,5 10,5 и 11 10 и 10,5 10,5 и 11 12,0
20 20 22 20 и 21,0 22,0 24,0
35 35 38,5 35 и 36,5 38,5 40,5
110 121 110 и 115 115 и 121 126
220 242 220 и 230 230 и 242 252
330 330 347 330 330 363
500 500 525 500 525
750 750 787 750 787

Питание цепей управления, сигнализации и автоматизации электроустановок, а также электрифицированного инструмента и местного освещения в производственных цехах осуществляется на постоянном токе напряжениями 12, 24, 36, 48 и 60 В и на переменном однофазном токе 12, 24 и 36 В. Электроприемники постоянного тока питаются на напряжениях 110; 220 и 440 В. Напряжения генераторов постоянного тока 115; 230 и 460 В.

Электрифицированный транспорт и ряд технологических установок (электролиз, электропечи, некоторые виды сварки) получают питание на напряжениях, отличных от приведенных выше.

Читайте также:  Транзисторный регулятор напряжения 220в 2квт

У повышающих силовых трансформаторов номинальное напряжение первичной обмотки совпадает с номинальным напряжением трехфазных генераторов. У понижающих трансформаторов первичная обмотка является приемником электроэнергии, и ее номинальное напряжение равно напряжению сети.

Номинальные напряжения вторичных обмоток трансформаторов, питающих электрические сети, на 5 или 10 % выше номинальных напряжений сети, что дает возможность компенсировать потери напряжения в линиях: 230, 400, 690 В и 3,15 (или 3,3); 6,3 (или 6,6); 10,5 (или 11); 21 (или 22); 38,5; 121; 165; 242; 347; 525; 787 кВ.

Номинальные напряжения электрических сетей и области их применения

Напряжение 660 В рекомендуется для питания силовых электроприемников. По сравнению с напряжением 380 В оно имеет ряд преимуществ: меньшие потери энергии и расход проводникового материала, возможность применения более мощных электродвигателей, меньшее количество цеховых ТП. Однако для питания мелких двигателей, цепей управления электроприводом и сетей электроосвещения необходимо устанавливать дополнительный трансформатор на 380 В.

Напряжение 3 кВ используется только для питания электроприемников, работающих на этом напряжении.

Электроснабжение предприятий, внутризаводское распределение энергии и питание отдельных электроприемников выполняются на напряжениях свыше 1000 В.

Напряжения 500 и 330 кВ применяются для питания особенно крупных предприятий от сетей энергосистемы. На напряжениях 220 и 110 кВ осуществляется питание крупных предприятий от энергосистемы и распределение энергии на первой ступени электроснабжения.

На напряжении 35 кВ питаются предприятия средней мощности, удаленные электропотребители, крупные электроприемники и распределяется энергия по системе глубоких вводов.

Напряжения 6 и 10 кВ используются для питания предприятий малой мощности и в распределительных сетях внутреннего электроснабжения. Напряжение 10 кВ целесообразнее, если источник питания работает на этом напряжении, а число электроприемников на 6 кВ невелико.

Напряжения 20 и 150 кВ широкого применения на промышленных предприятиях не находят из-за использования их только в некоторых энергосистемах и отсутствия соответствующего электрооборудования.

Выбор напряжения сети производится одновременно с выбором схемы электроснабжения, а в некоторых случаях — на основе технико-экономического сравнения вариантов.

Источник



По каким внешним признакам определяют напряжение линии электропередач? | ЭнергоПоставщик

ВЛ используют для передачи электроэнергии на большие расстояния. Такой способ значительно дешевле транспортировки по подземным и наземным линиям. Для уменьшения потерь мощности используется передача электроэнергии на высоком напряжении. Рассмотрим, как определить напряжение линии по внешним признакам.

0,38-04 кВ

Низкий класс напряжения. Эти ВЛ на 0,38 кВ предназначены для передачи электроэнергии на небольшие расстояния в пределах маленького населенного пункта, городского микрорайона.

Низковольтные линии отличает тип опор, количество токоведущих элементов и вид изоляторов. Стойки таких ВЛ выполняют из железобетона и дерева. 4 провода закреплены на изоляторах штыревого типа из фарфора и стекла. Безопасное расстояние от токоведущих элементов составляет 0.6-1 м.

6-10 кВ

Средний класс. Используется для транспортировки электричества до трансформаторных подстанций, питающих конечных потребителей. Напряжение ВЛ составляет от 6-10 кВ до 35 кВ.

Линии 6-10 кВ сооружают для транспортировки электричества на незначительные расстояния. Причем в городских условиях применяют ВЛ на напряжение 6 кВ, в сельской местности на 10 кВ. Линии отличаются наличием высоких ЖБ-опор, более массивными штыревыми изоляторами из фарфора или стекла. На поворотных стойках провода фиксируют подвесными гирляндами из 2-3 изоляторов.

Линии среднего напряжения имеют 3 провода. Часто на одних и тех же стойках тянут ЛЭП 0,4 и 10 кВт. При этом токоведущие линии более высокого напряжения размещаются на широких траверсах вверху опоры. 4-х проводная линия 0,4 кВ расположена ниже.

35 кВ

Воздушные линии на 35 кВ прокладываются на высоких бетонных опорах. Для крепления голых проводов используются гирлянды, содержащие по 3-5 изоляторов.

Иногда применяют массивные штыревые изолирующие устройства. Как и на ЛЭП 6-10 кВ, количество проводов ВЛ составляет 3 шт. ЛЭП такого типа применяют для подачи электричества до узловых пригородных ТП или подстанций тупикового типа.

110 кВ

Высокий класс. Линии такого типа на напряжение 110-220 кВ служат для передачи электроэнергии между областями и округами.

Линии применяются для подачи электроэнергии к перераспределяющим подстанциям, объектам с высоковольтными электроприемниками. Для таких ВЛ применяются опоры из стали. Число проводов – 3 с каждой стороны стойки. Проводящие линии 110 кВ закреплены на подвесных изоляторах по 6-7 штук. Безопасное расстояние от проводов составляет 1 м.

220 кВ

ЛЭП сверхвысокого напряжения. Служат для передачи электричества на большие расстояния к объектам с высоковольтными потребителями. Напряжение линий такого типа — 330-500 кВ.

ВЛ данного типа сложно отличить от ЛЭП 110 кВ. Для них также применяются опоры из конструкционной стали на фундаментах или растяжках. Количество изоляторов составляет 8-9.

330 кВ

ЛЭП этого типа можно отличить по 2 проводам каждой фазы. Для их фиксации использует гирлянды изоляторов по 14 элементов и более. В остальном такие ЛЭП похожи на линии высокого класса.

500 кВ

На каждую фазу ЛЭП приходится по 3 провода. Охранная зона таких ВЛ равна 30 м. Провода крепятся наборными конструкциями из 20 изоляторов.

750-1150 кВ

ВЛ ультравысокого напряжения. Область применения таких ЛЭП от 750 до 1150 кВ аналогична ВЛ сверхвысокого напряжения.

Линии ультравысокого напряжения тянут по П или V-образным стальным опорам. Они имеют от 4 до 8 проводов на одной фазе и от 20 изоляторов на подвесной гирлянде.

Компания “Энергопоставшик” оказывает услуги проектирования, строительства и реконструкции ЛЭП до 35 кВ. Мы также принимаем заказы на поставку траверс для изоляторов и других металлоконструкций для низковольтных и высоковольтных линий различного класса. Звоните!

Источник