Меню

Способ передачи электрической мощности

Способы передачи электроэнергии

date image2020-01-14
views image807

facebook icon vkontakte icon twitter icon odnoklasniki icon

Осуществить передачу электроэнергии можно двумя способами:

– методом прямой передачи;

– преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием.

Ниже на рисунке представлены типовые схемы, из которых первые две (1, 2) относятся к разомкнутому виду, остальные – к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

Рисунок 9.1 – Схема передачи электроэнергии от электростанции до потребителя: 1 – радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором – потребитель или распределительное устройство; 2 – магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи; 3 – магистральная схема с питанием на обоих концах ЛЭП; 4 – кольцевой тип конфигурации; 5 – магистраль с резервной линией (двойная магистраль); 6 – сложнозамкнутый вариант конфигурации (подобные схемы применяются при подключении ответственных потребителей)

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЭП переменного и постоянного тока.

Рисунок 9.2 – Схемы передачи электроэнергии к потребителям при использовании ЛЭП с переменным (А) и постоянным (В) током: 1 – генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой; 2 – подстанция с повышающим трехфазным трансформатором; 3 – подстанция с трансформатором, понижающим напряжение трехфазного переменного тока; 4 – отвод для передачи электроэнергии распределительному устройству; 5 – выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный; 6 – инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока (рисунок 9.2, В) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

9.4 Структурная схема электроснабжения

Передача электроэнергии на дальние расстояния. Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ЛЭП с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами: протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением, то есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации. Статическую устойчивость можно не принимать во внимание. Нет необходимости синхронизировать по частоте связанные энергосистемы. Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию. Меньшее влияние электромагнитных волн на средства связи. Практически отсутствует генерация реактивной мощности.

Рисунок 9.3 – Пример структурной схемы электроснабжения: 1 – электростанция, где электроэнергия производится; 2 – подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния; 3 – ЛЭП с высоким напряжением (35,0-750,0 кВ); 4 – подстанция с понижающими функциями (на выходе 6,0-10,0 кВ); 5 – пункт распределения электроэнергии; 6 – питающие кабельные линии; 7 – центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ; 8 – радиальные или магистральные кабельные линии; 9 – вводный щит в цеховом помещении; 10 – районная распределительная подстанция; 11 – кабельная радиальная или магистральная линия; 12 – подстанция, понижающая напряжение до 0,40 кВ; 13 – вводный щит жилого дома, для подключения внутренней электрической сети

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования.

Читайте также:  Тариф за потребление реактивной мощности

Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Источник

Передача электроэнергии — распространенные способы и альтернативные варианты

Электричество не относится к накопительным ресурсам. На сегодняшний день нет эффективных технологий, позволяющих аккумулировать энергию, выработанную генераторами, поэтому передача электроэнергии потребителям относится к актуальным задачам. В стоимость ресурса входят затраты на его производство, потери при транспортировке и расходы на монтаж и обслуживание ЛЭП. При этом от схемы передачи напрямую зависит эффективность системы электроснабжения.

Высокое напряжение, как способ уменьшения потерь

Несмотря на то, что во внутренних сетях большинства потребителей, как правило, 220/380 В, электроэнергия передается к ним по высоковольтным магистралям и понижается на трансформаторных подстанциях. Для такой схемы работы есть весомые основания, дело в том, что наибольшая доля потерь приходится на нагрев проводов.

Мощность потерь описывает следующая формула: Q = I 2 * R л ,

где I – сила тока, проходящего через магистраль, R Л – ее сопротивление.

Исходя из приведенной формулы можно заключить, что снизить затраты можно путем уменьшения сопротивления в ЛЭП или понизив силу тока. В первом случае потребуется увеличивать сечения провода, это недопустимо, поскольку приведет к существенному удорожанию электропередающих магистралей. Выбрав второй вариант, понадобится увеличить напряжение, то есть, внедрение высоковольтных ЛЭП приводит к снижению потерь мощности.

Классификация линий электропередач

В энергетике принято разделять ЛЭП на виды в зависимости от следующих показателей:

  1. Конструктивные особенности линий, осуществляющих передачу электроэнергии. В зависимости от исполнения они могут быть двух видов:
  • Воздушными. Передача электричества осуществляется с использованием проводов, которые подвешиваются на опоры.

Способы передачи электроэнергии

Осуществить передачу электроэнергии можно двумя способами:

  • Методом прямой передачи.
  • Преобразуя электричество в другой вид энергии.

В первом случае электроэнергия передается по проводникам, в качестве которых выступает провод или токопроводящая среда. В воздушных и кабельных ЛЭП применяется именно этот метод передачи. Преобразование электричества в другой вид энергии открывает перспективы беспроводного снабжения потребителей. Это позволит отказаться от линий электропередач и, соответственно, от расходов, связанных с их монтажом и обслуживанием. Ниже представлены перспективные беспроводные технологии, над совершенствованием которых ведутся работы.

К сожалению, на текущий момент возможности транспортировки электричества беспроводным способом сильно ограничены, поэтому об эффективной альтернативе методу прямой передачи говорить пока рано. Исследовательские работы в этом направлении позволяют надеяться, что в ближайшее время решение будет найдено.

Схема передачи электроэнергии от электростанции до потребителя

Ниже на рисунке представлены типовые схемы, из которых первые две относятся к разомкнутому виду, остальные — к замкнутому. Разница между ними заключается в том, что разомкнутые конфигурации не являются резервированными, то есть, не имеют резервных линий, которые можно задействовать при критическом увеличении электрической нагрузки.

  1. Радиальная схема, на одном конце линии находится электростанция производящая энергию, на втором — потребитель или распределительное устройство.
  2. Магистральный вариант радиальной схемы, отличие от предыдущего варианта заключается в наличии отводов между начальным и конечным пунктами передачи.
  3. Магистральная схема с питанием на обоих концах ЛЭП.
  4. Кольцевой тип конфигурации.
  5. Магистраль с резервной линией (двойная магистраль).
  6. Сложнозамкнутый вариант конфигурации. Подобные схемы применяются при подключении ответственных потребителей.

Теперь рассмотрим более подробно радиальную схему для передачи вырабатываемой электроэнергии по ЛЕП переменного и постоянного тока.

  1. Генератор, где вырабатывается я электроэнергия с синусоидальной характеристикой.
  2. Подстанция с повышающим трехфазным трансформатором.
  3. Подстанция с трансформатором, понижающим напряжение трехфазного переменного тока.
  4. Отвод для передачи электироэнергии распределительному устройству.
  5. Выпрямитель, то есть устройство преобразующее трехфазный переменный ток в постоянный.
  6. Инверторный блок, его задача сформировать из постоянного напряжение синусоидальное.

Как видно из схемы (А), с источника энергии электричество подается на повышающий трансформатор, затем при помощи воздушных линий электропередач производится транспортировка электроэнергии на значительные расстояния. В конечной точке линия подключается к понижающему трансформатору и от него идет к распределителю.

Метод передачи электроэнергии в виде постоянного тока ( В на рис.6) от предыдущей схемы отличается наличием двух преобразовательных блоков (5 и 6).

Закрывая тему раздела, для наглядности приведем упрощенный вариант схемы городской сети.

  1. Электростанция, где электроэнергия производится.
  2. Подстанция, повышающая напряжение, чтобы обеспечить высокую эффективность передачи электроэнергии на значительные расстояния.
  3. ЛЭП с высоким напряжением (35,0-750,0 кВ).
  4. Подстанция с понижающими функциями (на выходе 6,0-10,0 кВ).
  5. Пункт распределения электроэнергии.
  6. Питающие кабельные линии.
  7. Центральная подстанция на промышленном объекте, служит для понижения напряжения до 0,40 кВ.
  8. Радиальные или магистральные кабельные линии.
  9. Вводный щит в цеховом помещении.
  10. Районная распределительная подстанция.
  11. Кабельная радиальная или магистральная линия.
  12. Подстанция, понижающая напряжение до 0,40 кВ.
  13. Вводный щит жилого дома, для подключения внутренней электрической сети.
Читайте также:  Формула расчета мощности через момент

Передача электроэнергии на дальние расстояния

Основная проблема, связанная с такой задачей – рост потерь с увеличением протяженности ЛЭП. Как уже упоминалось выше, для снижения энергозатрат на передачу электричества уменьшают силу тока путем увеличения напряжения. К сожалению, такой вариант решения порождает новые проблемы, одна из которых коронные разряды.

С точки зрения экономической целесообразности потери в ВЛ не должны превышать 10%. Ниже представлена таблица, в которой приводится максимальная протяженность линий, отвечающих условиям рентабельности.

Таблица 1. Максимальная протяженность ЛЭП с учетом рентабельности (не более 10% потерь)

Напряжение ВЛ (кВ) Протяженность (км)
0,40 1,0
10,0 25,0
35,0 100,0
110,0 300,0
220,0 700,0
500,0 2300,0
1150,0* 4500,0*

* — на текущий момент ультравысоковольтная ВЛ переведена на работу с напряжением в половину от номинального (500,0 кВ).

Постоянный ток в качестве альтернативы

В качестве альтернативы электропередачи переменного тока на большое расстояние можно рассматривать ВЛ с постоянным напряжением. Такие ЛЭП обладают следующими преимуществами:

  • Протяженность ВЛ не влияет на мощность, при этом ее максимальное значение существенно выше, чем у ЛЭП с переменным напряжением. То есть при увеличении потребления электроэнергии (до определенного предела) можно обойтись без модернизации.
  • Статическую устойчивость можно не принимать во внимание.
  • Нет необходимости синхронизировать по частоте связанные энергосистемы.
  • Можно организовать передачу электроэнергии по двухпроводной или однопроводной линии, что существенно упрощает конструкцию.
  • Меньшее влияние электромагнитных волн на средства связи.
  • Практически отсутствует генерация реактивной мощности.

Несмотря на перечисленные способности ЛЭП постоянного тока, такие линии не получили широкого распространения. В первую очередь это связано с высокой стоимостью оборудования, необходимого для преобразования синусоидального напряжения в постоянное. Генераторы постоянного тока практически не применяются, за исключением электростанций на солнечных батареях.

С инверсией (процесс полностью противоположный выпрямлению) также не все просто, необходимо допиться качественных синусоидальных характеристик, что существенно увеличивает стоимость оборудования. Помимо этого следует учитывать проблемы с организацией отбора мощности и низкую рентабельность при протяженности ВЛ менее 1000-1500 км.

Кратко о свехпроводимости.

Сопротивление проводов можно существенно снизить, охладив их до сверхнизких температур. Это позволило бы вывести эффективность передачи электроэнергии на качественно новый уровень и увеличить протяженность линий для использования электроэнергии на большом удалении от места ее производства. К сожалению, доступные на сегодняшний день технологии не могут позволить использования сверхпроводимости для этих целей ввиду экономической нецелесообразности.

Источник



ПЕРЕДА́ЧА ЭЛЕКТРОЭНЕ́РГИИ

ПЕРЕДА́ЧА ЭЛЕКТРОЭНЕ́РГИИ, ком­плекс уст­ройств и со­ору­же­ний, пред­на­зна­чен­ных для пе­ре­да­чи элек­тро­энер­гии вы­со­ко­го на­пря­же­ния пе­ре­мен­ным трёх­фаз­ным то­ком или по­сто­ян­ным то­ком на оп­ре­де­лён­ное рас­стоя­ние (от не­сколь­ких де­сят­ков до ты­сяч км и бо­лее). Не­об­хо­ди­мость П. э. обу­слов­ле­на тем, что элек­тро­энер­гия вы­ра­ба­ты­ва­ет­ся круп­ны­ми элек­тро­стан­ция­ми, а по­треб­ля­ет­ся срав­нитель­но ма­ло­мощ­ны­ми при­ём­ни­ка­ми элек­тро­энер­гии, рас­пре­де­лён­ны­ми на зна­чит. тер­ри­то­рии, ча­сто су­щест­вен­но уда­лён­ной от элек­тро­стан­ций. От эф­фек­тив­но­сти П. э. за­ви­сит ра­бо­та еди­ных элек­тро­энер­ге­ти­че­ских сис­тем, ох­ва­ты­ваю­щих об­шир­ные тер­ри­то­рии.

В ком­плекс для пе­ре­да­чи пе­ре­мен­но­го то­ка вхо­дят: ли­ния элек­тро­пе­ре­да­чи, кон­це­вые и про­ме­жу­точ­ные под­стан­ции элек­три­че­ские с ком­му­та­ци­он­ной ап­па­ра­ту­рой, транс­фор­ма­то­ры и ав­то­транс­фор­ма­то­ры на этих под­стан­ци­ях, уст­рой­ст­ва про­доль­ной и по­пе­реч­ной ком­пен­са­ции (см. Ком­пен­си­рую­щие уст­рой­ст­ва), пе­ре­клю­ча­тель­ные пунк­ты (при не­об­хо­ди­мо­сти), уст­рой­ст­ва ре­лей­ной за­щи­ты и ав­то­ма­ти­ки, те­ле­мет­рии, свя­зи. Пе­ре­да­чи пе­ре­мен­ным то­ком мо­гут быть транс­порт­ны­ми и меж­сис­тем­ны­ми. Транс­порт­ная пе­ре­да­ча пред­на­зна­че­на для П. э. от уда­лён­ной элек­трич. стан­ции в при­ём­ную сис­те­му, меж­сис­тем­ная – для свя­зи отд. элек­тро­энер­ге­тич. сис­тем и об­ме­на элек­тро­энер­ги­ей ме­ж­ду ни­ми. По ЛЭП пе­ре­да­ют­ся по­то­ки мощ­но­сти, из­ме­ряе­мые сот­ня­ми и ты­ся­ча­ми МВт. Од­ной из осн. ха­рак­те­ри­стик элек­тро­пе­ре­да­чи яв­ля­ет­ся её про­пу­ск­ная спо­соб­ность, т. е. та наи­боль­шая мощ­ность, ко­то­рую мож­но пе­ре­дать по ЛЭП. П. э. свя­за­на с за­мет­ны­ми по­те­ря­ми, т. к. элек­трич. ток на­гре­ва­ет про­во­да ЛЭП. Мощ­ность $P$, пе­ре­да­вае­мая по ли­нии трёх­фаз­но­го то­ка при сим­мет­рич­ной на­груз­ке фаз,$$P=\sqrt<3>IU\cos φ,\tag1$$ где $I$ и $U$ – дей­ст­вую­щие зна­че­ния ли­ней­ной си­лы то­ка и ли­ней­но­го на­пря­же­ния, $φ$ – угол сдви­га фаз ме­ж­ду фаз­ным на­пря­же­ни­ем и си­лой то­ка.

Мощ­ность, те­ряе­мая в про­во­дах, $$P_l=3I^2R=3I^2\rho\frac,\tag2$$ или $$P_l=\frac<3P^2><3U^2\cos^2 \varphi>\rho\frac=\frac\rho\frac\tag3$$Здесь $R$ – на­груз­ка в элек­трич. це­пи, $ρ$ – удель­ное со­про­тив­ле­ние ма­те­риа­ла про­во­дов, $l$ – их дли­на, $S$ – пло­щадь по­пе­реч­но­го се­че­ния. Ана­ли­зи­руя вы­ра­же­ние (3), мож­но оты­скать пу­ти умень­ше­ния те­ряе­мой мощ­но­сти. Пе­ре­да­вае­мая мощ­ность $P$ и даль­ность пе­ре­да­чи энер­гии $l$ оп­ре­де­ля­ют­ся ус­ло­вия­ми элек­тро­пе­ре­да­чи. Эти ве­ли­чи­ны из­ме­нить не­воз­мож­но. Удель­ное со­про­тив­ле­ние $ρ$ за­ви­сит от ма­те­риа­ла, из ко­то­ро­го из­го­тов­лены про­во­да. На прак­ти­ке ис­поль­зу­ют­ся пре­им. ма­те­риа­лы с наи­мень­шим зна­че­ни­ем $ρ$ (медь, алю­ми­ний). Уве­ли­че­ние пло­ща­ди по­пе­реч­но­го се­че­ния про­во­дов ма­ло­эф­фек­тив­но; зна­чи­тель­ное их утол­ще­ние не­воз­мож­но из-за боль­шой мас­сы и стои­мо­сти ли­нии. По­это­му ос­та­ют­ся два пу­ти умень­ше­ния по­терь элек­трич. энер­гии: уве­ли­че­ние на­пря­же­ния в ЛЭП и по­вы­ше­ние ко­эф. мощ­но­сти. Ко­гда ко­эф. мощ­но­сти $\cos φ$ мал, часть энер­гии цир­ку­ли­ру­ет по про­во­дам от ге­не­ра­то­ра к по­тре­би­те­лям и об­рат­но, что при­во­дит к зна­чит. по­те­рям на на­гре­ва­ние про­во­дов. Пре­дель­ная пе­ре­да­вае­мая мощ­ность до­сти­га­ет­ся, ко­гда $\cos j=1$. Да­же при та­ком срав­ни­тель­но вы­со­ком ко­эф. мощ­но­сти, как $\cos φ=0,8$, по­те­ри в ЛЭП при­мер­но в 1,5 ра­за боль­ше, чем в слу­чае, ко­гда $\cos φ=1$. При совр. мас­шта­бах пе­ре­да­чи энер­гии по­вы­ше­ние зна­че­ния $\cos φ$ с 0,8 до 0,9 да­ло бы ог­ром­ную эко­но­мию мощ­но­сти, рав­ную мощ­но­сти не­сколь­ких круп­ных элек­тро­стан­ций. Од­на­ко гл. путь умень­ше­ния по­терь мощ­но­сти в про­во­дах ЛЭП – это по­вы­ше­ние на­пря­же­ния в ли­нии пе­ре­да­чи. Чем длин­нее ЛЭП, тем вы­год­нее ис­поль­зо­вать бо­лее вы­со­кое на­пря­же­ние. По­это­му при пе­ре­да­че энер­гии от мощ­ных элек­тро­стан­ций элек­трич. ток по ши­нам по­сту­па­ет на транс­фор­ма­тор­ные по­вы­шаю­щие под­стан­ции. По­сле по­вы­ше­ния на­пря­же­ния на под­стан­ции до 35, 110, 220, 500, 750 кВ энер­гия на­прав­ля­ет­ся в рай­он по­тре­би­те­ля на по­ни­жаю­щие под­стан­ции, где на­пря­же­ние по­ни­жа­ет­ся до 6–10 кВ. С по­ни­жаю­щих под­стан­ций по се­ти с на­пря­же­ни­ем 6–10 кВ энер­гия час­тич­но на­прав­ля­ет­ся к вы­со­ко­вольт­ным по­тре­би­те­лям, час­тич­но на по­ни­жаю­щие под­стан­ции, где на­пря­же­ние по­ни­жа­ет­ся обыч­но до 380 В. Да­лее по низ­ко­вольт­ной се­ти она под­во­дит­ся к по­тре­би­те­лям.

Читайте также:  Свч печь мощностью 800 вт

По­вы­ше­ние про­пу­ск­ной спо­соб­но­сти ЛЭП пе­ре­мен­но­го то­ка воз­мож­но и пу­тём усо­вер­шен­ст­во­ва­ния кон­ст­рук­ции ли­нии, а так­же по­сред­ст­вом вклю­че­ния разл. ком­пен­си­рую­щих уст­ройств. Уст­рой­ст­ва про­доль­ной ком­пен­са­ции при­ме­ня­ют­ся для по­вы­ше­ния про­пу­ск­ной спо­соб­но­сти пе­ре­да­чи. Та­ким уст­рой­ст­вом слу­жит кон­ден­са­тор­ная ба­та­рея, вклю­чён­ная в рас­сеч­ку ли­нии, за счёт че­го ком­пен­си­ру­ет­ся часть ин­дук­тив­но­сти ли­нии и, как след­ст­вие, по­вы­ша­ет­ся про­пу­ск­ная спо­соб­ность по­след­ней. Уст­рой­ст­ва по­пе­реч­ной ком­пен­са­ции слу­жат для по­гло­ще­ния из­бы­точ­ной за­ряд­ной мощ­но­сти ЛЭП в ре­жи­мах ма­лых на­гру­зок и ге­не­ра­ции ре­ак­тив­ной мощ­но­сти в ре­жи­мах боль­ших на­гру­зок, ста­би­ли­за­ции на­пря­же­ния в уз­ло­вых точ­ках пе­ре­да­чи. В ка­че­ст­ве уст­ройств по­пе­реч­ной ком­пен­са­ции ис­поль­зу­ют­ся управ­ляе­мые и не­управ­ляе­мые шун­ти­рую­щие ре­ак­то­ры, ста­тич. ти­ри­стор­ные ком­пен­са­то­ры (уст­рой­ст­ва, ос­но­ван­ные на при­ме­не­нии си­ло­вой пре­об­ра­зо­ват. тех­ни­ки). Пе­ре­клю­ча­тель­ные пунк­ты пред­став­ля­ют со­бой про­ме­жу­точ­ную под­стан­цию без на­груз­ки, на ко­то­рой име­ют­ся толь­ко вы­клю­ча­те­ли вы­со­ко­го на­пря­же­ния, разъ­е­ди­ни­те­ли и за­зем­ли­те­ли, пред­на­зна­чен­ные для от­клю­че­ния отд. уча­ст­ков ка­ж­дой из це­пей про­тя­жён­ной ли­нии при по­вре­ж­де­ни­ях на дан­ном уча­ст­ке или для про­ве­де­ния на нём ре­монт­но-про­фи­лак­тич. ра­бот.

Наи­бо­лее пер­спек­тив­ным спо­со­бом пе­ре­да­чи элек­тро­энер­гии на даль­ние рас­стоя­ния яв­ля­ет­ся ис­поль­зо­ва­ние по­сто­ян­но­го то­ка. При П. э. по­сто­ян­ным то­ком вы­ра­ба­ты­вае­мое ге­не­ра­то­ра­ми элек­тро­стан­ции пе­ре­мен­ное на­пря­же­ние пред­ва­ри­тель­но по­вы­ша­ют с по­мо­щью транс­фор­ма­то­ров, а за­тем с по­мо­щью вы­пря­ми­те­лей пре­об­ра­зу­ют в по­сто­ян­ное на­пря­же­ние. В кон­це ЛЭП по­сто­ян­ное на­пря­же­ние сно­ва пре­об­ра­зу­ют в пе­ре­мен­ное с по­мо­щью ин­вер­то­ров, по­сле че­го транс­фор­ма­то­ры по­ни­жа­ют его до нуж­но­го зна­че­ния. В ком­плекс для пе­ре­да­чи по­сто­ян­но­го то­ка вхо­дят: ЛЭП по­сто­ян­но­го то­ка, пре­об­ра­зо­ват. уст­рой­ст­ва (вы­пря­ми­тель и ин­вер­тор) со свои­ми транс­фор­ма­то­ра­ми, фильт­ро­ком­пен­си­рую­щие уст­рой­ст­ва пе­ре­мен­но­го то­ка, ли­ней­ные ре­ак­то­ры и фильт­ры по­сто­ян­но­го то­ка, а так­же сис­те­мы управ­ления пре­об­ра­зо­ва­те­ля­ми, ре­гу­ли­ро­ва­ния, за­щи­ты, ав­то­ма­ти­ки, сис­те­ма свя­зи. В элек­тро­пе­ре­да­чах по­сто­ян­но­го то­ка от­сут­ст­ву­ют мн. фак­то­ры, свой­ст­вен­ные элек­тро­пе­ре­да­чам пе­ре­мен­но­го то­ка и ог­ра­ни­чи­ваю­щие их про­пу­ск­ную спо­соб­ность (напр., ЛЭП по­сто­ян­но­го то­ка по­зво­ля­ют пе­ре­да­вать по тем же про­во­дам бóльшую энер­гию). Кро­ме то­го, при пе­ре­да­че элек­тро­энер­гии по­сто­ян­ным то­ком ис­че­за­ют за­труд­не­ния, свя­зан­ные с ин­дук­тив­ным со­про­тив­ле­ни­ем и ём­ко­стью ли­нии. Ог­ра­ни­че­ния­ми здесь яв­ля­ют­ся лишь макс. до­пус­ти­мый кпд ли­нии и мощ­ность пре­об­ра­зо­ва­те­лей. От­сут­ст­вие за­ряд­ной мощ­но­сти ли­нии (ём­кость ме­ж­ду ли­ни­ей и зем­лёй) по­зво­ля­ет со­ору­жать ка­бель­ные ли­нии дли­ной 100–200 км и бо­лее, что не­дос­ти­жи­мо для ка­бель­ных ли­ний пе­ре­мен­но­го то­ка из-за пе­ре­гре­ва то­ко­ве­ду­щих жил ка­бе­ля за­ряд­ной мощ­но­стью. Осн. об­лас­ти при­ме­не­ния элек­тро­пе­ре­дач по­сто­ян­но­го то­ка: связь элек­тро­энер­ге­тич. сис­тем, ра­бо­таю­щих не­син­хрон­но или с разл. час­то­та­ми (объ­е­ди­не­ние круп­ных уда­лён­ных друг от дру­га энер­го­сис­тем); пе­ре­се­че­ние боль­ших вод­ных про­странств с по­мо­щью ка­бель­ных ли­ний и др. Ог­ра­ни­чен­ность при­ме­не­ния элек­тро­пе­ре­дач по­сто­ян­но­го то­ка свя­за­на гл. обр. с тех­нич. труд­но­стя­ми соз­да­ния эф­фек­тив­ных не­до­ро­гих уст­ройств для пре­об­ра­зо­ва­ния пе­ре­мен­но­го то­ка в по­сто­ян­ный (в на­ча­ле ли­нии) и по­сто­ян­но­го то­ка в пе­ре­мен­ный (в кон­це ли­нии).

Ка­че­ст­во пе­ре­да­чи элек­тро­энер­гии оп­ре­де­ля­ет­ся на­дёж­ной и ус­той­чи­вой ра­бо­той элек­тро­пе­ре­да­чи, что обес­пе­чи­ва­ет­ся, в ча­ст­но­сти, при­ме­не­ни­ем ком­пен­си­рую­щих уст­ройств и сис­тем ав­то­ма­тич. ре­гу­ли­ро­ва­ния и управ­ле­ния. (Ис­то­ри­че­скую справ­ку см. в ст. Ли­ния элек­тро­пе­ре­да­чи.)

Источник