Меню

Схема соединения обмоток трансформатора напряжения 110 кв

Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

О том, как токи огромных величин высоковольтного оборудования энергетики моделируются с большой точностью для безопасного использования в цепях РЗА написано в этой статье — Измерительные трансформаторы тока в схемах релейной защиты и автоматики.

Здесь же рассказывается о способах преобразования напряжений величиной в десятки и сотни киловольт для управления работой устройств релейных защит и автоматики на основе двух принципов:

1. трансформации электроэнергии;

2. емкостного разделения.

Первый способ позволяет более точно отображать вектора первичных величин и за счет этого широко распространен. Второй метод используется для контроля определенной фазы напряжения сети 110 кВ схем с обходной системой шин и в некоторых других случаях. Но, за последнее время он находит все большее применение.

Как изготовлены и работают измерительные трансформаторы напряжения

Основное принципиальное отличие измерительных трансформаторов напряжения (ТН) от трансформаторов тока (ТТ) состоит в том, что они, как и все силовые модели, рассчитаны на обычную работу без закороченной вторичной обмотки.

В то же время, если силовые трансформаторы предназначены для передачи транспортируемой мощности с минимальными потерями, то измерительные трансформаторы напряжения конструируются с целью высокоточного повторения в масштабе векторов первичного напряжения.

Принципы работы и устройства

Конструкцию трансформатора напряжения, как и трансформатора тока, можно представить магнитопроводом с намотанными вокруг него двумя обмотками:

Принцип работы измерительного трансформатора напряжения

Специальные сорта стали для магнитопровода, а также металл их обмоток и слой изоляции подбираются для максимально точного преобразования напряжения с наименьшими потерями. Число витков первичной и вторичной катушек рассчитывается таким образом, чтобы номинальное значение высоковольтного линейного напряжения сети, подаваемое на первичную обмотку, всегда воспроизводилось вторичной величиной 100 вольт с тем же направлением вектора для систем, собранных с заземленной нейтралью.

Если же первичная схема передачи энергии создана с изолированной нейтралью, то на выходе измерительной обмотки будет присутствовать 100/√3 вольт.

Для создания разных способов моделирования первичных напряжений на магнитопроводе может располагаться не одна, а несколько вторичных обмоток.

Схемы включения ТН

Измерительные трансформаторы применяются для замера линейных и/или фазных первичных величин. Для этого силовые обмотки включают между:

проводами линии с целью контроля линейных напряжений;

шиной или проводом и землей, чтобы снимать фазное значение.

Важным элементом безопасности измерительных трансформаторов напряжения является заземление их корпуса и вторичной обмотки. На него обращается повышенное внимание, ведь при пробое изоляции первичной обмотки на корпус или во вторичные цепи в них появится высоковольтный потенциал, способный травмировать людей и сжечь оборудование.

Преднамеренное заземление корпуса и одной вторичной обмотки отводит этот опасный потенциал на землю, чем предотвращает дальнейшее развитие аварии.

1. Силовое оборудование

Пример подключения измерительного трансформатора напряжения в сети 110 киловольт показан на фотографии.

Измерительные трансформаторы напряжения 110 кВ

Здесь выделено, что силовой провод каждой фазы подключен ответвлением к выводу первичной обмотки своего трансформатора, размещенного на общей заземленной железобетонной опоре, поднятой на безопасную для электротехнического персонала высоту.

Корпус каждого измерительного ТН со вторым выводом первичной обмотки заземляется прямо на этой платформе.

Вывода вторичных обмоток собраны в клеммной коробке, расположенной в нижней части каждого ТН. К ним подключаются провода кабелей, собираемых в распределительном силовом ящике, расположенном рядом на высоте, удобной для обслуживания с земли.

В нем не только осуществляется коммутация схемы, но и устанавливаются автоматические выключатели вторичных цепей напряжения и рубильники или блоки для выполнения оперативных переключений и проведения безопасного обслуживания оборудования.

Собранные здесь шинки напряжения подводятся к устройствам релейных защит и автоматики специальным силовым кабелем, к которому предъявляются повышенные требования по снижению потерь напряжения. Этот очень важный параметр цепей измерения рассмотрен отдельной статьей здесь — Потери и падение напряжения

Кабельные трассы измерительных ТН также защищаются металлическими коробами или железобетонными плитами от случайного механического повреждения, как и ТТ.

Еще один вариант подключения измерительного трансформатора напряжения типа НАМИ, размещенного в ячейке сети 10 кВ, показан на картинке ниже.

Схема включения измерительного трансформатора напряжения в ячейке 10 кВ

Каждая фаза первичной сети подключается на соответствующий ввод силовой обмотки. Провода вторичных цепей выводятся отдельным кабелем к своему клеммнику.

2. Вторичные обмотки и их цепи

Простая схема включения одного трансформатора на линейное напряжение силовой схемы показана ниже.

Схема включения одного ТН для контроля междуфазного напряжения

Эта конструкция может встретиться в цепях до 10 кВ включительно. Она на каждой стороне имеет защиту предохранителями соответствующих номиналов.

В сети 110 кВ подобный трансформатор напряжения может устанавливаться на одну фазу обходной системы шин для обеспечения контроля синхронизма цепей подключаемого присоединения и ОСШ.

Схема включения одного ТН для контроля синхронизма напряжений

На вторичной стороне используются две обмотки: основная и дополнительная, обеспечивающие выполнение синхронного режима при управлении выключателями с блочного щита.

Для включения трансформатора напряжения на две фазы обходной системы шин при управлении выключателями с главного щита применяется следующая схема.

Схема включения двух ТН для контроля синхронизма напряжений

Здесь ко вторичному вектору «кф», образованному предыдущей схемой, добавляется вектор «ик».

Следующая схема получила название «открытого треугольника» или неполной звезды.

Схема включения двух ТН по схеме открытого треугольника

Она позволяет смоделировать систему из двух или трех междуфазных напряжений.

Наибольшими же возможностями обладает подключение трех трансформаторов напряжения по схеме полной звезды. В этом случае можно получить как все фазные, так и линейные напряжения во вторичных цепях.

Схема включения трех ТН по схеме звезды

За счет этой возможности этот вариант используется на всех ответственных подстанциях, а вторичные цепи для таких ТН создаются с двумя видами обмоток, включаемыми по схемам звезды и треугольника.

Читайте также:  При каком напряжении открываются форсунки

Схемы включения трнасформаторов напряжения

Приведенные схемы включения обмоток являются наиболее типовыми и далеко не единственными. Современные измерительные трансформаторы обладают различными возможностями и под них вводятся определенные корректировки в конструкцию и схему подключения.

Классы точности измерительных трансформаторов напряжения

Для определения погрешностей при метрологических измерениях ТН руководствуются схемой замещения и векторной диаграммой.

Векторная диаграмма определения погрешностей трансформатора напряжения

Этот довольно сложный технический метод позволяет определить погрешности каждого измерительного ТН по амплитуде и углу отклонения вторичного напряжения от первичного и назначить класс точности для каждого поверяемого трансформатора.

Все параметры замеряются при номинальных нагрузках во вторичных цепях, на которые создан ТН. Если их превысить при эксплуатации или поверке, то погрешность выйдет за значение номинальной величины.

Измерительным трансформаторам напряжения присваиваются 4 класса точности.

Классы точности измерительных трансформаторов напряжения

Классы точности измерительных ТН Максимальные пределы для допустимых погрешностей
FU, % δU, мин
3 3,0 не определяется
1 1,0 40
0,5 0,5 20
0,2 0,2 10

Класс №3 используется в моделях, работающих в устройствах РЗА, не требующих высокой точности, например, — для срабатывания элементов сигнализации о возникновении неисправных режимов в схемах питания.

Самой высокой точностью 0,2 обладают приборы, используемые для ответственных высокоточных измерений при наладках сложных устройств, проведения испытаний при приемке, настройках автоматики регулирования частоты и других подобных работах. ТН с классами точности 0,5 и 1,0 чаще всего устанавливаются на высоковольтном оборудовании для передачи вторичных напряжений на щитовые приборы, контрольные и расчетные счетчики, релейные комплекты блокировок, защит, синхронизации цепей.

Способ емкостного отбора напряжения

Принцип этого метода заключается в обратно пропорциональном выделении напряжения на цепочке последовательно включенных обкладок конденсаторов разной емкости.

Принцип устройства емкостного делителя напряжения

Рассчитав и подобрав номиналы емкостей, включенных последовательно с фазным напряжением шин либо линии Uф1, удается получить на конечном конденсаторе С3 вторичную величину Uф2, которая снимается прямо с емкости или через подключенное для облегчения настроек трансформаторное устройство с регулируемым числом обмоток.

Особенности эксплуатации измерительных трансформаторов напряжения и их вторичных цепей

Требования к монтажу

В целях безопасности все вторичные цепи ТН должны быть защищены автоматическим выключателями типа АП-50 и заземлены медным проводом с сечением не менее 4 мм кв.

Если на подстанции используется двойная система шин, то цепи каждого измерительного трансформатора должны подключаться через схему реле повторителей положения разъединителей, которая исключает одновременную подачу напряжения на одно устройство РЗА от разных ТН.

Все вторичные цепи от клеммной сборки ТН до устройств РЗА должны выполняться одним силовым кабелем так, чтобы сумма токов всех жил была равна нулю. Для этого запрещено:

отдельно выводить шинки «В» и «К» и объединять их для совместного заземления;

подключать шинку «В» к устройствам синхронизации через контакты ключей, переключателей, реле;

переключать шинку «В» на счетчиках контактами РПР.

Все работы с действующим оборудованием производятся специально подготовленным для этого персоналом под контролем должностных лиц и по бланкам переключений. Для этого в цепях трансформаторов напряжения установлены рубильники, предохранители, автоматические выключатели.

При выводе из работы определенного участка цепей напряжения обязательно указывается способ проверки выполненного мероприятия.

Периодическое техническое обслуживание

Вторичные и первичные цепи трансформаторов при эксплуатации подвергаются разным срокам проверок, которые привязаны ко времени, прошедшему после ввода устройства в эксплуатацию и включают в себя различный объем выполнения электротехнических замеров и чисток оборудования специально обученным ремонтным персоналом.

Основная неисправность, которая может проявиться в цепях напряжения при их эксплуатации — возникновение токов коротких замыканий между обмотками. Чаще всего это происходит при невнимательной работе специалистов электриков в действующих цепях напряжения.

При случайном закорачивании обмоток отключаются защитные автоматические выключатели, расположенные в клеммном ящике на измерительном ТН, и пропадают цепи напряжения, питающие реле мощности, комплекты блокировок, синхронизма, дистанционные защиты и другие устройства.

В этом случае возможно ложное срабатывание действующих защит или отказ их работы при возникновении неисправностей в первичной схеме. Такие замыкания необходимо не только быстро устранять, но и включать все автоматически отключенные устройства.

Измерительные трансформаторы тока и напряжения являются обязательным элементом на любой электрической подстанции. Они необходимы для надежной работы устройств релейной защиты и автоматики.

Источник

Схемы соединений обмоток ТТ и реле

В данной статье речь пойдет о типовых схемах соединений обмоток трансформаторов тока (ТТ) и реле.

В трехфазных электрических сетях переменного тока всех классов напряжения ТТ для питания устройств РЗ устанавливаются в двух или в трех фазах: как правило, в сетях 6 и 10 кВ с малыми токами замыкания на землю в двух фазах (А и С), в сетях 35 кВ и обязательно в сетях 110 кВ и выше в трех фазах. Все три фазы оснащаются ТТ и в сетях напряжением до 1 кВ, если они работают с глухозаземленной нейтралью.

При выполнении токовых защит используются следующие четыре схемы соединения вторичных обмоток ТТ и токовых цепей реле тока [Л1, с.41]:

  • полная звезда (трехфазная, трехрелейная);
  • неполная звезда (двухфазная, двухрелейная);
  • неполная звезда с реле в обратном проводе (двухфазная, трехрелейная);
  • включение реле на разность токов двух фаз (двухфазная, однорелейная).
Читайте также:  Формула сила кулона напряжение

Схемы характеризуются отношением тока в реле lр к вторичному I2 току ТТ, называемым коэффициентом схемы.

Схемы соединений обмоток ТТ и реле

Схема полной звезды ТТ

Схема полной звезды ТТ

В схеме полной звезды (рис. 1, а) в реле проходят вторичные токи измерительных трансформаторов, поэтому коэффициент схемы kcx=1.

Защита может срабатывать при любом виде КЗ. Эта схема применяется обычно в сетях с глухозаземленной нейтралью, в которых могут возникать не только междуфазные, но и однофазные КЗ, сопровождающиеся протеканием тока в одной фазе. В сетях с изолированной (компенсированной) нейтралью (6-35 кВ) схема, как правило, не применяется, так как в этих сетях могут возникать лишь междуфазные КЗ, для фиксации которых достаточно иметь трансформаторы тока в двух фазах. Схема относительно дорогая, так как требует трех ТТ и трех реле тока.

Схема неполной звезды ТТ

Схема неполной звезды ТТ

В схеме неполной звезды (рис. 1, б) в реле тока проходят вторичные токи ТТ, установленных в фазах А и С. Коэффициент схемы kcx = 1. Схема нашла широкое распространение в сетях с изолированной нейтралью, поскольку она обеспечивает отключение любого междуфазного КЗ (двухфазного или трехфазного).

Недостатком схемы является пониженная (в 2 раза по сравнению с предыдущей схемой) чувствительность максимальной токовой защиты при двухфазном КЗ АВ за трансформатором со схемой соединения обмоток У/Д-11, поскольку при этом в реле защиты проходит ток, в 2 раза меньше, чем в схеме полной звезды.

Схема неполной звезды ТТ с реле в обратном проводе

Схема неполной звезды ТТ с реле в обратном проводе

В схеме неполной звезды с реле в обратном проводе (рис. 1, в) через реле 3КА, включенное в обратный провод, проходит сумма вторичных токов фаз А и С или (при междуфазных КЗ) ток фазы В с обратным знаком [Л1, с.42]:

Сумма вторичных токов через реле 3КА включенное в обратный провод

Схема обладает достоинством схемы неполной звезды (использование двух ТТ) и имеет такую же чувствительность при двухфазных КЗ за трансформатором У/Д-11, как и схема полной звезды. Коэффициент схемы kcx = 1.

Схема неполной звезды с реле в обратном проводе или без него нашла широкое распространение в токовых защитах линий напряжением до 35 кВ включительно (т.е. в сетях с изолированной нейтралью).

Схема неполного треугольника ТТ

Схема неполного треугольника ТТ

В схеме неполного треугольника (рис. 1, г) в реле КА проходит ток, равный разности токов фаз А и С, в которых установлены ТТ [Л1, с.42]:

Определение тока в реле при схеме неполного треугольника

Коэффициент схемы (в симметричном режиме работы защищаемой линии) [Л1, с.43]:

Коэффициент схемы при схеме неполного треугольника

Достоинствами схемы являются ее простота и дешевизна: используется только одно реле тока.

Однако схема имеет недостатки, существенно ограничивающие область ее применения:

  • защита обладает пониженной чувствительностью (по сравнению с рассмотренными выше схемами в √3 раз) при некоторых видах двухфазных К3 на защищаемой линии;
  • защита отказывает в действии при двухфазном К3 за трансформатором Y/Д-l1, так как Iр = Iа — Iс оказывается в этом случае равным нулю;

И напоследок, для проверки своих знаний в части схем соединения обмоток ТТ и реле, можете воспользоваться обучающей программой по релейной защите и автоматике.

1. Измерительные трансформаторы тока и напряжения с литой изоляцией. Часть 1. Киреева Э.А., 2009 г.

Источник



Схемы соединения трансформаторов напряжения

Для правильного соединения между собой вторичных обмоток ТН и правильного подключения к ним реле направления мощности, ваттметров и счётчиков заводы-изготовители обозначают (маркируют) выводные зажимы обмоток определенным образом (см. рис 2.7, 2.8): начало первичной обмотки – А, конец – Х; начало основной вторичной обмотки – а, конец – х; начало дополнительной вторичной обмотки – ад, конец – хд.

Рис. 2.8. Схемы соединения обмоток однофазных трансформаторов напряжения с одной вторичной обмоткой

На рис. 2.8 и 2.9 приведены основные схемы соединения обмоток однофазных ТН.

На рис. 2.8, а дана схема включения одного ТН на междуфазное напряжение. Эта схема применяется, когда для защиты или измерений достаточно одного междуфазного напряжения.

На рис. 2.8, б приведена схема соединения двух ТН в открытый треугольник, или в неполную звезду. Эта схема, получившая широкое распространение, применяется, когда для защиты или измерений нужно иметь два или три междуфазных напряжения.

На рис. 2.8, в приведена схема соединения трёх ТН в звезду. Эта схема также получила широкое распространение и применяется, когда для защиты или измерений нужны фазные напряжения, или же фазные и междуфазные напряжения одновременно.

На рис. 2.8, г приведена схема соединения трёх ТН треугольник – звезда. Эта схема обеспечивает повышенное напряжение на вторичной стороне, равное

173 В. Такая схема, в частности, используется для питания электромагнитных корректоров напряжения устройств автоматического регулирования возбуждения генераторов.

Рис. 2.9. Схема соединения обмоток трансформатора напряжения
с двумя вторичными обмотками

На рис. 2.9 представлена схема соединения трансформаторов напряжения, имеющих две вторичные обмотки. Первичные и вторичные основные обмотки соединены в звезду, т.е. так же как в рассмотренной выше схеме на рис. 2.8, в. Дополнительные вторичные обмотки соединены в схему разомкнутого треугольника (на сумму фазных напряжений). Такое соединение применяется для получения напряжения нулевой последовательности, необходимого для включения реле напряжения и реле направления мощности защиты от однофазных КЗ в сети с заземлёнными нулевыми точками трансформаторов, и для сигнализации при однофазных замыканиях на землю в сети с изолированными нулевыми точками трансформаторов. Как известно, сумма трёх фазных напряжении в нормальном режиме, а также при двух-трёхфазных КЗ равна нулю. Поэтому, в указанных условиях напряжение между точками О1—О2 на рис. 2.9 равно нулю (практически между этими точками имеется небольшое напряжение: 0,5–2 В, которое называется напряжением небаланса). При однофазном КЗ в сети с заземлёнными нулевыми точками трансформаторов (сети 110 кВ и выше) фазное напряжение поврежденной фазы становится равным нулю, а геометрическая сумма фазных напряжений двух неповреждённых фаз оказывается равной фазному напряжению.

Читайте также:  Контроль силового напряжения человек паук

В сети с изолированными нулевыми точками трансформаторов (сети 35 кВ и ниже) при однофазных замыканиях на землю напряжения неповреждённых фаз относительно земли становятся равными междуфазному напряжению, а их геометрическая сумма оказывается равной утроенному фазному напряжению. Для того чтобы в последнем случае напряжение на реле не превосходило номинального значения, равного 100 В, у ТН, предназначенных для сетей, работающих с изолированными нулевыми точками трансформаторов, вторичные дополнительные обмотки, соединяемые в схему разомкнутого треугольника, имеют увеличенные в 3 раза коэффициент трансформации, например 6000/100/3 В.

Напряжение нулевой последовательности может быть также получено от специальных обмоток трёхфазных ТН. В конструкции, показанной на рис. 2.10, специальные обмотки расположены на крайних стержнях пятистержневого сердечника и соединены между собой последовательно. В нормальном режиме, а также при двух- и трех фазных КЗ, когда сумма фазных напряжений равна нулю, магнитный поток в крайних стержнях отсутствует, и поэтому напряжении на специальных обмотках нет. При однофазных КЗ или замыканиях на землю сумма фазных напряжений не равна нулю. Поэтому магнитный поток замыкается по крайним стержням и индуктирует напряжение на специальных обмотках.

Рис. 2.10. Схема соединений обмоток трёхфазного трансформатора напряжения с дополнительной обмоткой, расположенной на крайних стержнях

В другой конструкции, показанной на рис. 2.11, имеются дополнительные вторичные обмотки, расположенные на основных стержнях и соединённые в схему разомкнутого треугольника.

При включении первичных обмоток ТН на фазные напряжения они соединяются в звезду, нулевая точка которой обязательно соединяется с землей (заземляется), как показано на рис. 2.8, в; 2.9 – 2.11. Заземление первичных обмоток необходимо для того, чтобы при однофазных КЗ или замыканиях на землю в сети, где установлен ТН, реле и приборы, включённые на его вторичную обмотку, правильно измеряли напряжение фаз относительно земли. Вторичные обмотки ТН подлежат обязательному заземлению независимо от схемы их соединений. Это заземление является защитным, обеспечивающим безопасность персонала при попадании высокого напряжения во вторичные цепи. Обычно заземляется нулевая точка звезды (рис. 2.8, в и г) или один из фазных проводов – как правило, фазы «В» – для удобства проверки правильности включения электросчётчиков (рис. 2.8, а и б, 2.9). В проводах, соединяющих точку заземления с обмотками ТН, не должно быть коммутационных и защитных аппаратов (рубильников) переключателей, автоматических выключателей, предохранителей и т.д.). Сечение заземляющего провода должно быть не менее 4 мм 2 (по меди).

Рис. 2.11. Схема соединений обмоток трёхфазного пятистержневого трансформатора напряжения с дополнительной обмоткой, расположенной на основных стержнях

На промышленных предприятиях широко используются трансформаторы напряжения типа 3×ЗНОЛ-6(10) и НТМИ. Для защиты трансформаторов напряжения со стороны ВН обычно используются высоковольтные предохранители (например, ПКТ-10, ПКТ-35). Для защиты вторичных обмоток трансформаторов напряжения от перегрузок и КЗ применяются автоматические выключатели с отсечкой .

В схемах указаны меры, которые предпринимаются для защиты сети от самопроизвольного смещения нейтрали при феррорезонансе трансформатора напряжения. Феррорезонанс возникает в случае, когда ёмкость, какой либо фазы в сети компенсируется индуктивностью трансформатора напряжения, в этой фазе напряжение меняет знак и напряжение нейтрали приобретает величину . Такое явление может произойти при малой ёмкости сети – подаче напряжения на холостые шины, или в случае, если общая длина подключенных кабелей меньше 3 км, а воздушных линий меньше 60 км.

Для защиты от феррорезонансных перенапряжений в схемах с трансформаторами НТМИ или 3×ЗНОЛ применяется включение резисторов общим сопротивлением 25 Ом на обмотку 3U.

Однако включение такой нагрузки приводит к перегрузке дополнительной обмотки ТН при замыканиях на землю, и такой режим может существовать ограниченное время: до 8 часов для НТМИ-10.

В настоящее время в России и за рубежом выпускаются трансформаторы серий НАМИ-10, НТМ(i), НОМ и НАМИТ-6(10)-2, которые обладают антирезонансными свойствами.

Балансная схема фильтра 3U.

Фильтр напряжения нулевой последовательности (3U) может быть выполнен двумя способами: по напряжению – при наличии трансформатора напряжения с отдельной обмоткой разомкнутого треугольника, или по схеме фильтра напряжения нулевой последовательности, встроенного в реле, и предназначенного для подключения к звезде напряжений, при отсутствии такой обмотки. Такая схема используется, например, в ячейках фирмы «Таврида-Электрик». Схема балансного фильтра показана на рис. 2.12.

Рис. 2.12. Схема фильтра напряжения нулевой последовательности

Три резистора одинаковой величины подключаются соответственно к фазам а, в, с напряжения обмотки ТН соединённой в звезду, ко вторым концам резисторов, соединённым вместе и выводу нейтрали ТН подключается реле напряжения. На реле выделяется напряжение U.

Для сигнализации замыкания на землю выполняются уставки:

Схема работает неправильно при перегорании предохранителей на стороне ВН (или НН, если они там имеются).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник