Меню

Схема регулятора напряжения с tl431

TL431 схема включения, TL431 цоколевка

TL431 одна из самых массово выпускаемых интегральных микросхем, с начала своего выпуска в 1978 году TL431 устанавливалась в большинство блоков питания компьютеров, ноутбуков, телевизоров, видео-аудио техники и другой бытовой электроники.
TL431 является прецизионным программируемым источником опорного напряжения. Такая популярность обусловлена низкой стоимостью, высокой точностью и универсальностью.

Принцип работы TL431 легко понять по структурной схеме: если напряжение на входе источника ниже опорного напряжения Vref, то и на выходе операционного усилителя низкое напряжение соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он не превышает 1 мА). Если входное напряжение станет превышать Vref, то операционный усилитель откроет транзистор и от катода к аноду начнет протекать ток.

TL431 структурная схема

Самый простейший тип стабилизатора – параметрический, можно легко построить на TL431: для задания напряжения стабилизации понадобятся два резистора R1 и R2, напряжение на которое будет ‘запрограммирована’ TL431 можно определить по формуле:
Uвых=Vref( 1 + R1/R2 ).
Получается чем больше соотношение R1 к R2, тем больше выходное напряжение. Микросхема фактически стабилизирует напряжение на своем входе на уровне 2,5 В. Задавшись значением сопротивления R2 и требуемое выходное напряжение, рассчитать R1 можно по формуле:
R1=R2( Uвых/Vref – 1 ).
В данной схеме R3 рассчитывается точно также, как если бы использовался обычный стабилитрон, т.е. зависит от выходного напряжения, диапазона входного напряжения и диапазона токов нагрузки. Но есть и существенное отличие: в этой схеме на выход не стоит устанавливать конденсатор, так как этот конденсатор может вызвать генерацию паразитных колебаний. В схеме с обычным стабилитроном таких проблем не возникает.

параметрический стабилизатор на TL431 схема включения

TL431 цоколевка

TL431 выпускается в большом количестве разных корпусов, от древних TO-92 до современных SOT-23.

Также у TL431 имеется отечественный аналог: КР142ЕН19А.

TL431 цоколевка

Основные технические характеристики TL431:

  • напряжение анод-катод: 2,5…36 вольт;
  • ток анод-катод: 1…100 мА (если нужна стабильная работа, то не стоит допускать ток менее 5мА);

Точность опорного источника напряжения TL431 зависит от 6-той буквы в обозначении:

  • без буквы — 2%;
  • буква A — 1%;
  • буква B — 0,5%.

Видно, что TL431 может работать в широком диапазоне напряжений, но вот токовые способности не так велики всего 100 мА, да и мощность рассеиваемая такими корпусами не превышает сотен мили Ватт. Для получения более серьезных токов интегральный стабилитрон стоит использовать как источник опорного напряжения, регулирующую функцию доверив мощным транзисторам.

компенсационный стабилизатор напряжения

Принцип компенсационного стабилизатора на TL431 такой же как и на обычном стабилитроне: разность напряжений между входом и выходом компенсирует мощный биполярный транзистор. Но точность стабилизации получается выше, за счет того что обратная связь берется с выхода стабилизатора. Резистор R1 нужно рассчитывать на минимальный ток 5 мА, R2 и R3 рассчитываются, также как для параметрического стабилизатора.

компенсационный стабилизатор на TL431 схема включения

Чтобы стабилизировать токи на уровне единиц и десятков Ампер одним транзистором в компенсационном стабилизаторе не обойтись, нужен промежуточный усилительный каскад. Оба транзистора работают по схеме с эмиттерного повторителя, т.е. происходит усиление тока, а напряжение не усиливается.
На рисунке представлена реальная схема компенсационного стабилизатора на TL431, в ней появились новые компоненты: резистор R2 ограничивающий ток базы VT1 (например 330 Ом), резистор R3 – компенсирующий обратный ток коллектора VT2 (что особенно актуально при нагреве VT2) (например 4,7 кОм) и конденсатор C1 – повышающий устойчивость работы стабилизатора на высоких частотах (например 0,01 мкФ).

мощный компенсационный стабилизатор на TL431 схема включения

Стабилизатор тока на TL431

Следующая схема представляет собой термостабильный стабилизатор тока. Резистор R2 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжения 2,5 В. Таким образом если пренебречь током базы по сравнению с током коллектора, то получим ток на нагрузке Iн=2,5/R2. Если значение подставлять в Омах, то ток будет в Амперах, если подставлять в кило Омах, то ток будет в мили Амперах.

TL431 схема включения для построения стабилизатора тока

Реле времени

TL431 нашел свое применение не только как источник опорного напряжения, а и во многих других применениях. Например благодаря тому что входной ток TL431 составляет 2-4мкА, то на основе этой микросхемы можно построить реле времени: при размыкании контакта S1 C1 начинает медленно заряжаться через R1, а когда напряжение на входе TL431 достигнет 2,5 В выходной транзистор DA1 откроется и через светодиод оптопары PC817 начнет протекать ток, соответственно откроется и фототранзистор и замкнет внешнюю цепь.
В этой схеме резистор R2 ограничивает ток через оптрон и стабилизатор (например 680 Ом), R3 нужен чтобы предупредить зажигание светодиода от тока собственных нужд TL431 (например 2 кОм).

Реле времени на TL431 схема включения

Простое зарядное устройство для литиевого аккумулятора.

Главное отличие зарядного устройства от блока питания – четкое ограничение зарядного тока. Следующая схема имеет два режима ограничения:

  • по току;
  • по напряжению;

Пока напряжение на выходе меньше 4,2 В ограничивается выходной ток, при достижении напряжением величины 4,2 В начинает ограничиватся напряжение и ток заряда снижается.
На следующей схеме ограничение тока осуществляют транзисторы VT1, VT2 и резисторы R1-R3. Резистор R1 выполняет функцию шунта, когда напряжение на нем превышает 0,6 В (порог открывания VT1), транзистор VT1 открывается и закрывает транзистор VT2. Из-за этого падает напряжение на базе VT3 он начинает закрываться и следовательно снижается выходное напряжение, а это ведет к снижению выходного тока. Таким образом работает обратная связь по току и его стабилизация. Когда напряжение подбирается к уровню 4,2 В в работу начинает вступать DA1 и ограничивать напряжение на выходе зарядного устройства.

tl431-zaryadnoe-litii

А теперь список номиналов компонентов схемы:

  • DA1 – TL431C;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом (нужен для подстройки выходного напряжения);
  • VT1, VT2 – BC857B;
  • VT3 – BCP68-25;
  • VT4 – BSS138.

31 thoughts on “ TL431 схема включения, TL431 цоколевка ”

К1242ЕР1АП производства «Интеграл» Минск

Я бы не называл малоточность TL431 ее недостатком, это ведь не стабилизатор, как таковой, а источник опорного напряжения для него. Применяя различную периферию можно решать различные задачи по мощности, точности, надежности и т.д. Вот, внешние цепи могут быть любыми, а управляются одним и тем же устройством — TL431. Что и делает ее такой распространенной и востребованной.
Понравилась схема зарядки, где необходима регулировка и по току и по напряжению, применены и биполярный и униполярный транзисторы — каждый в своем режиме.

Читайте также:  Типы указатели напряжения емкостного типа

Да, конденсатор между анодом и катодом этого «стабилитрона» ставить не следует ни в коем случае. Я так столкнулся с самовозбуждением схемы стабилизатора напряжения, когда по неопытности решил, что с конденсатором на выходе источника опорного напряжения на TL431 схема будет работать стабильнее. Поставил конденсатор на 10 нФ, и схема «завелась», выдавая на выходе «кашу» из импульсов вместо постоянного напряжения. Что неудивительно, для операционного усилителя входящего в состав TL431 такой параметр как максимальная емкость нагрузки нужно учитывать как и для всякого другого ОУ.

Уже писал выше, что использовать источник прецизионного опорного напряжения в виде стабилизатора странно. Еще более странно, какой стабильности можно добиться емкостью в десяток нан. Стабильности задаваемого напряжения, шунтируя и устраивая паразитную ОС? Или выходного? Конечно возбудится.

А что там было о источнике опорного в виде стабилизатора? Опорное в стабилизаторе применялось в своем прямом назначении, в качестве опорного, с которым сравнивалось выходное ?

Думаю в русско язычной литературе вход опорное напряжение надо было назвать- напряжением порога или срабатывания. Интересно производитель пробовал U опр подавать на инвертирующий вход операционного усилителя может и не было само возбуждения.

Транзистор подключенный к выходу ОУ инвертирует сигнал.

Делал в свое время самодельный лабораторный блок питания с регулировкой напряжения и ограничения по току. Очень понравилась работа МС TL431 как регулятора тока. Практически исполнил регулировку от 0 до 10А, хотя она, действительно мало точная, но как управляющее звено очень даже то, что нужно.

Класс. Спасибо. Попробую этот вариант

Насчет использования TL431 не только как источника опорного напряжения… Если использовать в задающей цепи терморезистор, то можно, к примеру, прикрепив его на радиатор, регулировать вращение охлаждающего (этот радиатор) кулера. Очень удобно для блоков питания, работающих на динамическую нагрузку и лабораторных. Если же использовать фотоэлементы, то можно, к примеру регулировать подсветку, в зависимости от окружающего освещения. Очень удобно для уличных фонариков на солнечных батареях: светит солнце — заряжаются, село — начинают светить, чем темнее на улице, тем ярче.

Здравствуйте, не могли бы скинуть схему на терморезисторе для кулера, спасибо

А где же цокаллёвка

А можно ли заменить на схеме мощного стабилизатора напряжения дискретные транзисторы сборкой Дарлингтона, например TIP142?

Есть TL432 у нее другая распиновка.

Судя по «напряжение анод-катод: 2,5…36 вольт» Vref=2,5В? А то заострили внимание почему-то только на точности.

а как быстро сгорит vt2 в схеме зарядника, если контакты батареи случайно замкнутся? Или предполагается что R3 в 100к должен спасти ситуацию за счёт не очень высокой беты vt2? При 15 вольтах и средней бете, на нём будет рассеваться не менее 60 ма, это при максимальном токе в 100ма… По уму, последовательно с коллектором, или эмиттером vt2 должен стоять резистор ом в 350 и R3 уменьшен килоом до 5-10..

Нихрена не понял.. хоть бы параметры деталей указали.. так бы хоть чуть было понятнее что где и скоко.. А так хз.. какой транзистор, какой резистор и т.д.

на SOT-23-3 перепутаны местами катод и управляющий вывод.

на TO22/TO226 тоже маркировка не верная катод и управляющий наоборот.

А как ограничивается ток тл431 после окончания процесса зарядки?, через транзистор вт2, тл431 коротит на минус?!

Есть TL431 и TL432 распиновки зеркальные.

Мне одному кажется, что автор этой статьи упустил самое главное — спецификацию на эту микросхему?

это практическое применение, а спецификация есть в гугле)

Никогда не заморачивался сtl431 .Собирал схемы все работали.А сейчас мне надо в ИБП повысить с19 в до 24в.Все в гугле рекомендуют по плюсу .Тепер спасибо этой статье все получилось.

Автор молодец! Спасибо! Схема на стабилизацию напряжения работает на 100%.С точностью 0,02 вольта. При перепадах переменного напряжения в сети 40 вольт.

Здравствуйте, я правильно понимаю, что К142ЕН19 является отечественным аналогом? А можно как-то умощнить эту интегральную микросхему? Хотя бы даже Ваш пример на составных транзисторах подойдет?

Источник

Характеристики и схема включения TL431

Устройство TL431 является стабилизатором напряжения и программируемым источником опорного напряжения. Оно является наиболее популярным в сфере использования импульсных источников питания. В статье объясняется, что это такое, имеется описание того, где и как используются TL431 и TL431A, рассказывается, какие существуют особенности конструкции. Также указаны технические характеристики и прилагаются схемы подключения и применения устройства.

Что это такое

Почитайте описание устройства tl431a.

Параллельный стабилизатор TL431 работает так же, как стандартный стабилизатор. Различие уровня напряжения выхода и входа компенсируется благодаря мощному транзистору биполярного типа. Стабилизация будет лучше при условии того, что обратная связь поступает с выхода самого стабилизатора.

Резистор R1 должен быть рассчитан на минимальный ток, который равен 5 мА. Резисторы R2 и R3 рассчитываются аналогично, как для стабилизатора параметрического типа. Через каждый резистор протекает ток, у которого сила обратно пропорциональна значению сопротивления резистора. Существует два типа соединений резисторов: параллельное и последовательное соединение в форме цепи.

Где и как используется

Стабилизатор tl431 имеет конкретные характеристики.

Такие устройства, как правило, используются для компенсации колебаний напряжения в сети. Например, когда включена большая машина, потребность в энергии внезапно становится намного выше. Стабилизатор напряжения компенсирует изменение нагрузки. Стабилизаторы напряжения обычно работают в диапазоне напряжений, например, 150-240 В или 90-280 В.

Стабилизаторы напряжения используются в таких устройствах, как блоки питания компьютеров, где они стабилизируют напряжения постоянного тока. В автомобильных генераторах и центральных электростанциях-генераторах стабилизаторы напряжения контролируют мощность установки.

Выпускать устройство TL431 начали в 1977 году. Оно применяется в качестве источника опорного напряжения в схемах различных блоков питания ТВ, DVD, тюнеров и других разновидностей видео- и аудиотехники.

Также устройство необходимо для реализации обратной связи: выходное напряжение очень большое или же очень маленькое. Эксплуатируя участок цепи, который называется бандгап (источник опорного напряжения; его величина определяется шириной запрещённой зоны), TL431 является стабильным источником опорного напряжения в широких температурных диапазонах.

Особенности конструкции

Узнайте, как работает tl431.

У TL431 есть альтернативная версия TL43LI, у которой более лучшая стабильность, а также более низкий температурный дрейф (VI (dev)). Также у улучшенной версии более низкий опорный ток, которой необходим для повышения уровня точности всей системы.

Читайте также:  Стабилизатор напряжения 20 kva

Устройство TL431 является трёхконтактным и регулируется шунтирующим регулятором с термической стабильностью. Напряжение на выходе может устанавливаться между значением источника опорного напряжения (Vref) 2.5 и 36 В с двумя внешними резисторами. У устройства на выходе стандартный электрический импенданс – 0,2 Ом. Схема активного выхода обеспечивает очень точный способ включения. Эта возможность делает аппарат превосходной заменой диодов Зенера (стабилитронов) во многих областях применения, таких как встроенное регулирование и переключение источников питания.

Другая версия устройства – TL432 – имеет те же функциональные и технические характеристики, что и верися TL431, но имеет различные выводы для цоколевки DBV, DBZ и PK. Обе версии TL431 и TL432 представлены в трех классах с изначальными температурными пределами (при 25 градусах) 0.5%, 1% и 2% для B, A и стандартного класса соответственно. Более того, низкий дрейф на выходе в зависимости от температуры обеспечивает хорошую стабильность во всем диапазоне рабочих температур.

Цоколевка TL431 имеет следующий вид:

Цоколевка tl431.

Распиновка TL431 выглядит так:

распиновка tl431.

Технические характеристики TL431 и TL431A

У TL431A и TL431 такие параметры:

  • Мощность составляет 0.2 Вт.
  • Электрический ток на выходе достигает 100 мА.
  • Напряжение на выходе варьируется от 2,5 до 36 В.
  • Рабочая температура TL431 в диапазоне от 0 до +70 градусов.
  • Рабочая температура TL431A варьируется от -40 до +85 градусов.

Также важны другие параметры.

Выходное напряжение

Оно может поддерживаться постоянным только в указанных пределах.

Регулировка нагрузки

Эта характеристика является изменением выходного напряжения для данного текущего тока нагрузки

Линейное регулирование или регулирование на входе

Посмотрите схемы применения tl431.

Это степень, в которой выходное напряжение претерпевает изменения с изменением входного (питающего) напряжения. Это аналогично отношению изменения выходного сигнала к входному или изменению выходного напряжения за весь промежуток времени.

Температурный коэффициент выходного напряжения

Это показатель изменения температуры (усредненное по заданному температурному диапазону).

Изначальная точность регулятора напряжения (или точность напряжения)

Оно отображает ошибку в выходном напряжении для заданного регулятора без учета температурного фактора на точность вывода.

Падение напряжения

Посмотрите схемы включения tl431a.

Показатель – минимальная разница между входным и выходным напряжением. Для этой разницы регулятор все еще может подавать указанный ток. Дифференциальный ток ввода-вывода, при котором регулятор напряжения не будет выполнять свою функцию, – падение напряжения. Дальнейшее снижение входного напряжения может привести к понижению выходного напряжения. Данное значение зависит от тока нагрузки и температуры перехода.

Пусковой ток или импульсный входной ток

Также называется импульсный выброс при включении. Данный параметр отображает максимальный мгновенный входной ток, который потребляется устройством во время первого включения. Период длительности пускового тока – полсекунды (или несколько миллисекунд), тем не менее он почти всегда высок. Учитывая это, он является опасным, так как может постепенно сжигать детали (в течение нескольких месяцев), особенно если нет соответствующей защиты от такого типа тока.

Ток покоя в цепи регулятора

Этот электрический ток потребляется внутри цепи. Он недоступен для нагрузки и измеряется как входной ток без подключения нагрузки.

Переходная реакция

Эта реакция происходит, когда случается внезапное изменение электротока нагрузки или же входного напряжения.

Расчёт напряжения TL431

Как работает tl431.

Схемы применения TL431

Для того, чтобы правильно подключить, важно соблюдать технику безопасности и следовать последовательности, как, например, при применении схемы подключении двухклавишного выключателя или при применении схемы подключения узо.

Работа микросхемы

Схема включения tl431.

Извне принцип работы аппарата выделяется довольно несложно. Если подать на контакт ref напряжение, которое превышает 2 В, тогда выходной транзистор проведёт электрически ток между анодом и катодом. Ток, который идёт к микросхеме, в блоке питания в таком случае увеличивается. Это вызывает уменьшение мощности блока питания. Затем происходит уменьшение напряжения до допустимого уровня. Следовательно, для блока питания применяют TL431 с целью того, чтобы поддерживалось стабильное выходное напряжение.

Одна из самых важных частей микросхемы – источник опорного напряжения. Он эквивалентен ширине запрещённой зоны. Основные составляющие есть на фото кристалла – пространство эммитера транзистора Q5 в восемь раз превышает Q4. Так, два транзистора имеют разные реакции на температуру. Объединение выходных сигналов с транзисторов происходит посредство объединения через резисторы R4, R3 и R2 в необходимой пропорции с целью компенсации эффектов температуры. Итого, формируется стабильный опорный сигнал.

В компаратор по температуре из стабилизированной запрещённой зоны посылается напряжение. Входом компаратора служат Q9 и Q8, Q1 и Q6. Выход же компатора идёт через Q10, чтобы управлять резистором Q11 (выходной).

Схема включения TL431

Ознакомьтесь с параметрами tl431.

Схема включения и контроля напряжения TL431A

Схема включения tl431a.

Нередко терморезистор выполняет функцию датчика температуры, уменьшая степень своего сопротивления в случае возрастания температуры. Это происходит по причине отрицательного температурного коэффициента сопротивления (ТКС). Те резисторы, у которых сопротивление увеличивается вместе с увеличением температуры (с положительным значением ТКС), имеют название позисторы. В этом терморегуляторе в случае превышения температуры заданного лимита, заработает реле или любое другое устройство с подобными функциями. Оно сразу же отключит нагрузку или включит систему охлаждения в зависимости от ситуации.

Данная схема имеет малый гистерезис, и чтобы его увеличить, нужно ввести ООС (отрицательная обратная связь) между выводами 1-3. К примеру, подстроченный резистор с сопротивлением 1.0-0.5 мОм. Надо подобрать экспериментальным путём подобрать в зависимости от требуемого гистерезиса. Если требуется, чтобы устройство срабатывало во время температурного снижения, тогда следует поменять местами регуляторы и датчик. Иначе говоря, включить в верхнее плечо термистор, а в нижнее – переменное сопротивление с самим резистором.

Подключение устройства TL431 требует внимания и является ответственной операцией, при которой важно не пренебрегать правилами безопасности, как например при подключении электроплиты.

Источник



Линейный стабилизатор напряжения с регулировкой на TL431 и NPN транзисторах

Всем привет!
В последнее время я увлекся сборкой схем линейных стабилизаторов напряжения. Такие схемы не требуют редких деталей, а подборка компонентов и настройка также не вызывает особых сложностей. В этот раз я решил собрать схему линейного стабилизатора напряжения на «регулируемом стабилитроне» (микросхеме) TL431. TL431 выступает в качестве источника опорного напряжения, а силовую роль выполняет мощный NPN транзистор в корпусе ТО -220.

При входном напряжении 19В, схема способна служить источником стабилизированного напряжения в пределах от 2,7 до 16 В при токе до 4А. Стабилизатор оформлен в виде модуля, собранного на макетной плате. Выглядит следующим образом:

Читайте также:  Номинальное напряжение цепи управления электровоза вл 10

Стабилизатор требует блок питания постоянного тока. Имеет смысл применять такой стабилизатор с классическим линейным блоком питания, состоящим из железного трансформатора, диодного моста и конденсатора большой емкости. Напряжение в сети может меняться в зависимости от нагрузки и как следствие, будет меняться напряжение на выходе трансформатора. Данная схема будет обеспечивать стабильное выходное напряжение при изменяющимся входном. Нужно понимать, что стабилизатор понижающего типа, а также на самой схеме падает 1-3 В напряжения, поэтому максимальное выходное напряжение будет всегда меньше входного.

В качестве блока питания для данного стабилизатора в принципе можно использовать и импульсные блоки питания, например от ноутбука на 19 В. Но в этом случае, роль именно стабилизации будет минимальной, т.к. заводские импульсные блоки питания и так на выходе выдают стабилизированное напряжение.

Подбор компонентов
Максимальный ток, который может через себя пропустить микросхема TL431, согласно документации – 100 мА. В моем случае, я ограничил ток с запасом до примерно 80 мА при помощи резистора R1. Нужно рассчитать резистор по формулам.

Для начала нужно определить сопротивление резистора. При максимальном входном напряжении 19В по закону Ома сопротивление рассчитывается следующим образом:
R= U/I = 19В / 0,08A = 240 Ом

Нужно рассчитать мощность резистора R1:
P=I^2*R = 0,08 А * 0,08 А * 240 Ом = 1,5 Ватта

Я использовал советский резистор на 2 Ватта

Резисторы R2 и R3 образуют делитель напряжения, которое «программирует» TL431, причем резистор R3 переменный, что позволяет менять опорное напряжение, которое потом повторяется каскадом из транзисторов. Я использовал R2 – 1К Ом, R3 — 10К оМ. Мощность резистора R2 зависит от выходного напряжения. Например, при выходном напряжении 19В:
P=U^2/R = 19 * 19/ 1000 = 0,361 Ватт

Я использовал резистор в 1 Ватт.

Резистор R4 служит для ограничения тока на базе транзистора VT2. Номинал подбирать лучше опытным путем, контролируя выходное напряжение. Если сопротивление будет слишком большим, это заметно ограничит выходное напряжение схемы. В моем случае – это 100 Ом, мощность годится любая.

В качестве основного силового транзистора (VT1) лучше использовать транзисторы в корпусе ТО – 220 или более мощном (ТО247, ТО-3). Я использовал транзистор Е13009, купленный на Али Эксресс. Транзистор на напряжение до 400В и ток до 12А. Для подобной схемы высоковольтный транзистор – не самое оптимальное решение, но работать будет нормально. Транзистор скорее всего поддельный и 12 А не выдержит, а вот 5-6А вполне. В нашей схеме ток до 4А, поэтому для данной схемы годится. В данной схеме транзистор должен быть способен рассеять мощность до 30-35 Ватт.

Рассчитывается рассеваемая мощность как разница между входным и выходным напряжением умноженная на ток коллектора :
P = (U выход -U вход)*I коллектора
Например, входное напряжение у нас 19 В, мы выставили выходное напряжение 12 В, а ток коллектора у нас 3 А
Р = (19В-12В) *3А = 21 Ватт – вполне нормальная ситуация для нашего транзистора.

А если мы продолжим снижать выходное напряжение до 6В, то картина будет другая:
Р = (19В-6В) *3А = 39 Ватт , что не очень хорошо для транзистора в корпусе ТО-220 (еще нужно учитывать, что при закрытии транзистора ток тоже будет уменьшаться: на 6В ток будет около 2-2,5А, а не 3). В таком случае лучше либо использовать другой транзистор в более массивном корпусе, либо уменьшить разницу между входным и выходным напряжением (например, если блок питания трансформаторный, путем переключения обмоток).

Также транзистор должен быть рассчитан на ток от 5А и больше. Лучше брать транзистор со статическим коэффициентом передачи тока от 20. Китайский транзистор вполне соответствует данным требованиям. Перед запайкой в схему, я его проверил (ток и рассеиваемую мощность) на специальном стенде.

Т.к. TL431 может выдавать ток не более 100 мА, а для питания базы транзистора требуется больший ток, потребуется ещё один транзистор, который будет усиливать ток с выхода микросхемы TL431, повторяя опорное напряжение. Для этого и нужен транзистор VT2.
Транзистор VT2 должен быть способен подавать достаточный ток на базу транзистора VT1.

Грубо определить необходимый ток можно через статический коэффициент передачи тока (h21э или hFE или β) транзистора VT1. Если мы хотим на выходе иметь ток в 4 А, а статический коэффициент передачи тока VT1 равен 20, то:
I базы = I коллектора / β = 4 А / 20 = 0,2 А.

Статический коэффициент передачи тока будет меняться в зависимости от тока коллектора, так что это значение ориентировочное. Замер на практике показал, что нужно около 170 мА подать на базу транзистора VT1, чтобы ток коллектора был 4А. Транзисторы в корпусе ТО-92 начинают заметно греться при токах выше 0,1 А, поэтому в данной схеме я использовал транзистор КТ815А в корпусе ТО-126. Транзистор рассчитан на ток до 1,5А, статический коэффициент передачи тока — около 75. Небольшой радиатор для данного транзистора будет уместен.
Конденсатор С3 нужен для стабилизации напряжения на базе транзистора VT1, номинал — 100 мкФ, напряжение 25В.

На выходе и входе установлены фильтры из конденсаторов: С1 и С4 (электролитические на 25В, 1000 мкФ) и С2, С5 (керамические 2-10 мкФ).
Диод D1 служит для защиты транзистора VT1 от обратного тока. Диод D2 нужен для защиты от транзистора при питании коллекторных электродвигателей. Двигатели при отключении питания ещё какое-то время крутятся и в режиме торможения работают как генераторы. Вырабатываемый таким образом ток идет в обратном направлении и может повредить транзистор. Диод в данном случае замыкает двигатель на себя и ток не доходит до транзистора. Резистор R5 выполняет роль малой нагрузки для стабилизации в холостом режиме, номинал 10к Ом, мощность любая.

Схема практически не имеет защит (имеется в виду, что нет защиты от КЗ, защиты от переполюсовки, плавного старта, ограничения по току и т.д.), поэтому использовать ее нужно очень аккуратно. По той же причине не рекомендуется использовать подобные схемы в «лабораторных» блоках питания. Для этой цели лучше подойдут готовые микросхемы в корпусе ТО-220 на токи до 5А, например КР142ЕН22А. Либо как минимум для данной схемы нужно сделать дополнительный модуль для защиты от КЗ.

Источник