Меню

Схема электронный регулятор уровня

ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг

Home Радиотехника Простая схема тиристорного регулятора уровня воды

Простая схема тиристорного регулятора уровня воды

Простая схема тиристорного регулятора уровня воды на отечественных деталях

Устройство предназначено для автоматического поддержания уровня воды в заданных пределах. Такой регулятор очень удобен для управления электрическим насосом, откачивающим грунтовую воду из подвалов и других заглубленных помещений.

В подвале, в наиболее глубоком месте вкапывают металлический резервуар и монтируют в нем два датчика уровня: один опускают почти до дна, второй устанавливают вблизи верхней кромки резервуара. Резервуар и датчики подключают к электронному блоку (смотрите схему). Сверху резервуар прикрывают решеткой.

Грунтовая вода, скапливаясь в резервуаре, через некоторое время достигнет нижнего конца датчика Е1. В этот момент на управляющем электроде тиристора VS1 появится открывающее напряжение, тиристор откроется и сработает реле К1. Контактами К1-1 оно подключит параллельно датчику Е1 второй датчик Е2. Контактами К 1.2 (на схеме не показаны) реле включит электродвигатель насоса, который начнет откачку воды из резервуара. Через некоторое время уровень воды опустится ниже датчика Е2 и открывающее напряжение с управляющего электрода тиристора будет снято. После этого в ближайший момент перехода через «нуль» сетевого напряжения тиристор закроется, отключив насос. Далее следует медленное накопление воды до уровня Е1 — и цикл повторяется.

Датчики представляют собой пластины из полосовой нержавеющей стали толщиной 2 мм, укрепленные на держателе из изоляционного материала с малой степенью поглощения влаги (эбонит, полиэтилен, фторопласт, резина и др.). Резервуар также желательно изготовить из нержавеющего металла.

Реле К1 — РЭС9, паспорт РС4.524.203 (или другое на подходящее напряжение срабатывания, желательно с более мощными контактами). Трансформатор Т1 — любой, мощностью 5. 8 Вт с напряжением вторичной обмотки 15 В. VS1 — тиристор КУ201а. VD1 — КД202Б.

Описанный регулятор может быть использован для различных целей в народном хозяйстве, важно лишь, чтобы рабочая жидкость была электропроводна.

Источник

Простейшая схема автоматического управления уровнем воды

Устройство, сделанное своими руками на одном транзисторе, может изготовить практически любой, кто этого захочет и приложит небольшие усилия для закупки очень недорогих и не многочисленных комплектующих и спаяет их в схему. Применяется она для автоматического пополнения воды в расходных ёмкостях дома, на даче и везде, где присутствует вода, без ограничений. А таких мест очень много. Для начала рассмотрим схему этого устройства. Проще просто не бывает.Контроль уровня воды в автоматическом режиме с помощью простейшего электронного Схема контроля уровня воды.Вся схема управления уровнем воды состоит из нескольких простых деталей и если без ошибок собрана из хороших деталей, то не нуждается в настройке и сразу заработает, как запланировано. У меня подобная схема без сбоев работает уже почти три года, и я ей очень доволен. Схема автоматического управления уровнем водыСписок деталейТранзистор можно применить любой из этих: КТ815А или Б. TIP29A. TIP61A. BD139. BD167. BD815.ГК1 – геркон нижнего уровня.ГК2 – геркон верхнего уровня.ГК3 – геркон аварийного уровня.D1 – любой красный светодиод.R1 – резистор 3Ком 0.25 ватт.R2 – резистор 300 Ом 0.125 ватт.К1 – любое реле на 12 вольт с двумя парами нормально разомкнутыми контактами.К2 – любое реле на 12 вольт с одной парой нормально разомкнутых контактов.В качестве источников сигнала для пополнения воды в ёмкость, я применил поплавковые герконовые контакты. На схеме обозначаются ГК1, ГК2 и ГК3. Китайского производства, но очень приличного качества. Ни одного плохого слова сказать не могу. В ёмкости, где они стоят, у меня происходит обработка воды озоном и за годы работы на них ни малейшего повреждения. Озон является крайне агрессивным химическим элементом и многие пластики он растворяет совершенно без остатка.Теперь рассмотрим работу схемы в автоматическом режиме.При подаче питания на схему, срабатывает поплавок нижнего уровня ГК1 и через его контакт и резисторы R1и R2 подаётся питание на базу транзистора. Транзистор открывается и тем самым подаёт питание на катушку реле К1. Реле включается и своим контактом К1.1 блокирует ГК1 (нижний уровень), а контактом К1.2 подаёт питание на катушку реле К2, которое является исполнительным и включает своим контактом К2.1 исполнительный механизм. Исполнительным механизмом может быть насос для воды или электрический клапан, которые подают воду в ёмкость.Вода пополняется и когда превысит нижний уровень, выключится ГК1, тем самым подготавливая следующий цикл работы. Достигнув верхнего уровня, вода поднимет поплавок и включит ГК2 (верхний уровень) тем самым замыкая цепочку через R1, К1.1, ГК2. Питание на базу транзистора прервётся, и он закроется, выключив реле К1, которое своими контактами разомкнёт К1.1 и выключит реле К2. Реле, в свою очередь выключит исполнительный механизм. Схема подготовлена к новому циклу работы. ГК3 является поплавком аварийного уровня и служит страховкой, если вдруг не сработает поплавок верхнего уровня. Диод D1 является индикатором работы устройства в режиме наполнения воды.А теперь приступим к изготовлению этого очень полезного устройства.Размещаем детали на плату.Все детали размещаем на макетной плате, чтобы не делать печатную. При размещении деталей, нужно учитывать, чтобы паять как можно меньше перемычек. Нужно максимально использовать проводники самих элементов для монтажа.Окончательный вид.Схема управления уровнем воды запаяна.Схема готова к испытаниям.Подключаем к аккумулятору и имитируем срабатывание поплавков.Всё работает нормально. Смотрите видео об испытаниях в работе этой системы.Смотрите видео испытаний

Читайте также:  Холодильник samsung регулятор температуры

Источник



Радиосхемы Схемы электрические принципиальные

Мы в социальных сетях

Логотип

Главное меню

  • Главная
  • Начинающим
  • Аудиотехника
  • Электроника в быту
  • Антенны и радиоприемники
  • Источники питания
  • Шпионские штучки
  • Световые устройства
  • Приборы и измерения
  • Светодиод и его применение
  • Авто-Мото- Вело электроника
  • Музыкальные центры, магнитолы
  • DVD и домашние кинотеатры
  • Автомагнитолы и прочий автозвук
  • Блоки питания и инверторы ЖК телевизоров
  • Схемы мониторов
  • Схемы телевизоров LCD
  • Схемы телевизоров LED
  • Схемы усилителей и ресиверов
  • Схемы спутниковых ресиверов
  • Инверторы сварочные
  • Справочные материалы
  • Сварка и сварочное оборудование
  • Отечественная техника 20 века
  • Программаторы
  • Устройства на микроконтроллерах
  • Для компьютера
  • Телефония
  • Медицина и здоровье
  • Радиоуправление
  • Бытовая автоматика
  • Бытовая техника
  • Оргтехника
  • Ноутбуки
  • Ардуино

Реклама на сайте

Тонкомпенсированный электронный регулятор уровня

Л. ЛЕВИЦКИЙ, г. Мытищи Московской обл.
Радио, 1998 год, №5

Этот относительно простой регулятор уровня сигнала выполнен на дискретных элементах. Его можно рекомендовать радиолюбителям, которые хотят ввести в свою аппаратуру электронные регуляторы, но не могут приобрести соответствующие микросхемы. Данный регулятор, при условии подбора элементов, позволяет получить параметры, необходимые для применения в высококачественной аппаратуре звуковоспроизведения.

Предлагаемый электронный регулятор уровня, в отличие от регулятора громкости, который может быть и тон-компенсированным, выполнен по схеме сдвоенного дифференциального каскада, в котором звуковой сигнал подается в цепи эмиттеров, а коэффициент передачи изменяется в широких пределах посредством управления по цепи базы транзисторов.

В микросхемах электронных регуляторов на транзисторах одной структуры (например К525ПС1) коллекторы дифференциальных каскадов нагружены на резисторы, подключенные к шине питания +Uпит (рис. 1). Сопротивление резисторов R3 и R4 гораздо ниже динамического сопротивления транзисторов VT1 — VT4, поэтому шумы и пульсации с шины питания поступают на выход без ослабления. Вследствие этого требуются источники питания с низким уровнем пульсаций.

Читайте также:  Opel vectra с регулятора давления топлива

Кроме того, такая структура не позволяет получить непосредственно максимальный размах выходного сигнала ±12 В при напряжении питания ±15 В, да и коэффициент нелинейных искажений получается значительным. Перечисленные факторы затрудняют применение таких устройств для регуляторов громкости в высококачественной аппаратуре.

Если каскад выполнить по симметричной схеме (рис. 2)

то помехи по цепи питания можно значительно уменьшить. Помимо этого, здесь сигнал всегда остается симметричным, т.е. четные гармоники ниже, чем в исходном варианте. Но максимальный уровень выходного сигнала регулятора в таком включении транзисторов ограничен еще больше: он составляет всего около 300 мВ. Чтобы его увеличить, возможно, конечно, «развести» напряжение на базах транзисторов вплоть до величины ±( |Uпит| -1 В), но это потребует заметного усложнения устройства.

Проблему можно решить проще — подключением выхода регулятора к инверсному входу охваченного обратной связью ОУ в инвертирующем включении (действующего как преобразователь ток — напряжение). Его выходное напряжение зависит от отношения сопротивления резистора цепи обратной связи к сопротивлению источника сигнала (для ОУ). Максимальная же амплитуда сигнала при этом будет стандартной для конкретного типа ОУ и составит не менее 9 В, практически без повышения уровня гармоник.

В таком варианте регулятора полоса рабочих частот сузится до той, которую способен обеспечить этот ОУ, но для применения в звукотехнических устройствах имеются вполне современные ОУ с отличными параметрами.

Полная схема электронного регулятора (рис. 3) несколько сложнее функциональной. Такой регулятор использован для управления уровнем громкости в составе усилителя аудиокомплекса. Транзисторы VT1 — VT4 представляют собственно электронный регулятор. Входной сигнал звуковой частоты через резисторы R4 и R5, преобразующие входное напряжение в ток, подается в точки соединения эмиттеров VT1, VT2 и VT3, VT4 соответственно. Базы транзисторов VT2 и VT3 соединены с общим проводом через резистор R1, а на VT1 и VT4 подается управляющее напряжение в пределах -50. +50 мВ, что приводит к перераспределению тока коллекторов VT1 — VT4 либо на общий провод, либо на инверсный вход ОУ DA1. Последний усиливает его в соотношении R10/[(R4 • R5)/(R4 + R5)] для максимального коэффициента передачи сигнала.

Для приведенной схемы коэффициент максимального усиления Кмакс= 4,4. Изменением резисторов R4, R5 и R10 его можно сделать практически любым, допускаемым для применяемого ОУ.

Читайте также:  Схема регулятора оборотов двигателя пост

При таком построении все транзисторы регулятора работают при практически неизменном напряжении на коллекторах, и поэтому гармонические искажения не возникают. Основным источником искажений остается ОУ, им и определяется качество регулятора в целом.

Примененный ОУ может быть заменен другим, с малым коэффициентом гармоник на звуковых частотах и скорректированный для единичного усиления. В электронном регуляторе некоторые ОУ целесообразно дополнить двумя дополнительными транзисторами VT5, VT6 для снижения переключательных искажений выходного каскада (перевод в режим работы в классе А при снижении выходного тока). Но это вовсе не обязательно.

Транзисторы в регуляторе допустимо применять и другие: например, комплементарные пары серий КТ3107 и КТ3102, КТ315 и КТ361 с любыми буквенными индексами при условии, что их коэффициент передачи тока базы более 100 в диапазоне токов регулирования. Если он заметно падает при уменьшении тока коллектора, то это создает дополнительные искажения. Полевой транзистор может быть серии КП307. Все резисторы МЛТ — 0,125, электролитические конденсаторы — К50-6 или аналогичные, входной конденсатор — с пленочным диэлектриком (например серии К73).

В данном регуляторе напряжение на транзисторах практически постоянно, но токи меняются значительно, и с целью уменьшения этих изменений ток смещения дифференциальных каскадов выбран в несколько раз большим, чем входной.

Нужно также обратить внимание на необходимость установки дополнительных резисторов R1 и R3; без них усилитель возбуждается. Возможно, что окажется достаточно одного R1, допустимо также уменьшить их сопротивление, но не ниже 200 Ом.

Источник питания допустимо использовать с нестабилиэированным напряжением, но с достаточно хорошим подавлением пульсаций (до порядка 0,01. 0,1%).

Настройка регулятора заключается в следующем. Сначала при максимальном коэффициенте передачи (Uyпр = +50 мB) устанавливают нулевое смещение на выходе ОУ подбором резистора R6 (или R7). В авторском экземпляре регулятора такого подбора не потребовалось (допустимо отклонение сопротивлений резисторов до 5 — 10%).

Несколько больше влияет на этот параметр разница в напряжении UБЭ для транзисторов регулятора (при одинаковом токе). После проверки и, если нужно, установки нуля на выходе ОУ при максимальном коэффициенте передачи проверяется постоянная составляющая при уменьшении усиления на 6 дБ (Uyпp= 0), когда отклонение достигает максимума.

В авторском варианте в каждом из каналов регулятора отклонение от нуля достигало 1. 3 В. Исправить это можно либо подбором одного из транзисторов регулятора (любого), либо введением цепи смещения в разрыв между базами пары транзисторов (тоже любой). Можно, однако, как и автор, оставить это без дополнительной балансировки или подбора, так как даже в худшем случае для неискаженного сигнала остается размах сигнала до напряжения ±5 В.

От своих аналоговых собратьев регулятор отличается более низким коэффициентом гармоник (менее 0,2 %), а от цифровых — возможностью обрабатывать входные сигналы с напряжением, сколько угодно превышающим питающее, и отсутствием модуляции сигнала регулирующим. Кроме того, регулировка уровня имеет плавный характер (если управляющее напряжение изменяется без скачков). Если управляющее напряжение создавать цифровым методом, то появится дискретность, но без модуляции.

Источник