Меню

Силовой фактор который вызывает нормальное напряжение

Сопромат online

Расчеты в режиме online

1.3. Метод сечений. Внутренние силовые факторы.

Целостность твердого тела, его форма обусловливаются на­личием сил взаимодействия между его частицами. При дефор­мации тела под действием внешних нагрузок и других внеш­них воздействий происходит изменение сил взаимодействия между частицами тела. Эти изменения сил взаимодействия в сопротивлении материалов называются внутренними силами. Таким образом, под внутренними силами необходимо пони­мать силы взаимодействия между частицами тела, возника­ющие только в результате деформации тела. При отсутствии де­формации внутренние силы в теле считаются равными нулю.

Для определения внутренних сил необходимо, используя метод сечений, перевести их в категорию сил внешних. На рисунке 1 представлено твердое тело, на которое действует про­извольная система внешних сил F1, F2….Fn, удовлетворя­ющая условиям равновесия. Мысленно рассечем тело плоскостью на две части и отбросим одну часть.

Рисунок 2.png

Рисунок 1.2 Произвольная система сил.

Чтобы любая часть, например левая, находилась в равнове­сии, необходимо действие отброшенной правой части на рас­сматриваемую левую заменить в сечении внутренними силами. В другом сечении они будут другими. Внутренние силы всегда взаимны: правая часть действует на левую так же, как левая на правую. Внутренние силы считаются поверхностными, т.е. принимается, что взаимодействие частиц, примыкающих с раз­ных сторон к сечению, является контактным и что частицы, расположенные за сечением, во взаимодействии не участвуют.

Метод сечений — это прием, позволяющий обнаруживать внутренние силы и рассматривать их как внешние силы по от­ношению к оставшейся (рассматриваемой) части тела.

Приведем систему внутренних сил, используя положения статики, к центру тяжести сечения (рисунок 1.3 а).

Рисунок2.png

Рисунок 1.3.а Внутренние силы, приведенные к центру тяжести сечения.

В результате приведения получим главный вектор Fc и главный момент Мс, разложив которые по осям координат, получим три силы и три момента Fх, Fу, Fz, Мх, Му, Мz (рисунок 1.3 б).

Рисунок 3.png

Рисунок 1.3.б Внутренние силовые факторы.

Эти составляющие обозначаются специальными буквами и на­зываются внутренними силовыми факторами. Fx = N- назы­вается продольной или нормальной силой; Fz =QZ и Fy=Qy назы­ваются поперечными силами; Мх = Т называется крутящим мо­ментом; Му и Mz называются изгибающими моментами относи­тельно осей у и z.

Для отсеченной части в общем случае можно составить шесть уравнений равновесия :

ф 1-7

Из (1.7) следует, что

ф 1-8

Согласно (1.8) нормальная сила N в поперечном сечении равна алгебраической сумме проекций на ось x всех внешних сил, действующих на отсеченную часть тела; поперечные силы Qy и Qz в сечении — соответственно равны алгебраической сумме проекций на оси у и z, расположенные в рассматриваемом се­чении, всех внешних сил, действующих на отсеченную часть тела; крутящий момент Т в поперечном сечении равен алгебра­ической сумме моментов относительно оси х всех внешних сил, действующих на отсеченную часть тела; изгибающие мо­менты Му и Мz в сечении соответственно равны алгебраиче­ской сумме моментов относительно осей у и z рассматриваемо­го сечения всех внешних сил, действующих на отсеченную часть тела. Результаты будут одинаковыми независимо от того, какая отсеченная часть тела рассматривается.

Читайте также:  При увеличении сопротивления реостата напряжение

Таким образом, в расчетных схемах как внешние нагрузки, так и внутренние силовые факторы нужно рассматривать как скалярные величины.

Нормальная сила, направленная от сечения, вызывает в се­чении растяжение материала и считается положительной, а на­правленная к сечению — вызывает в сечении сжатие материала и считается отрицательной.

Поперечная сила считается положительной, если внешние силы стремятся вращать отсеченную часть тела (бруса или ра­мы) относительно проведенного сечения по часовой стрелке; если — против часовой стрелки, то поперечная сила считается отрицательной.

Крутящий момент в сечении считается положительным, ес­ли при взгляде на сечение со стороны внешней нормали внеш­ние силы стремятся вращать отсеченную часть по часовой стрелке, если — против часовой стрелки, то крутящий момент в сечении считается отрицательным.

Изгибающий момент от внешних сил, вызывающих сжатие верхних волокон балки или сжатие наружных волокон рамы, считается положительным, а от внешних сил, вызывающих сжа­тие нижних волокон балки или внутренних волокон рамы, — от­рицательным.

Нагружение называется простым, если в поперечных сече­ниях элемента конструкции возникает только один внутрен­ний силовой фактор, или сложным (комбинированным), если в поперечных сечениях элемента одновременно действуют не­сколько внутренних силовых факторов.

Внутренние силовые факторы вдоль элемента (бруса) изме­няются. Эпюрами называются графики, показывающие, как из­меняются внутренние силовые факторы в сечениях по длине бруса (балки). (Пример построения эпюр ступенчатого стержня)

Эпюры позволяют установить положение опасного сече­ния, в котором действуют максимальные внутренние силы и моменты.

Источник

ISopromat.ru

В процессе деформации бруса, под нагрузкой происходит изменение взаимного расположения элементарных частиц тела, в результате чего в нем возникают внутренние силы.

По своей природе внутренние силы представляют собой взаимодействие частиц тела, обеспечивающее его целостность и совместность деформаций. Для определения этих сил применяют метод сечений:

Брус с произвольной системой нагрузок

надо мысленно рассечь брус, находящийся в равновесии, на две части

Рассечение бруса на две части

и рассмотреть равновесие одной из них.

Действие усилий отброшенной части бруса заменим уравновешивающими рассматриваемую часть внутренней силой R и внутренним моментом M.

Замена отброшенной части бруса силой и моментом

Для упрощения расчетов силу R и момент M принято раскладывать на составляющие усилия относительно осей координат x, y и z.

Составляющие внутренних сил

Таким образом, под действием внешних нагрузок в поперечном сечении бруса могут возникать следующие внутренние силовые факторы:

  • Nz = N — продольная растягивающая (сжимающая) сила;
  • Mz = T — крутящий (скручивающий) момент;
  • Qx (Qy) = Q — поперечные силы;
  • Mx (My) = M — изгибающие моменты.

Каждый внутренний силовой фактор определяется из соответствующего уравнения равновесия оставшейся после рассечения бруса части (уравнения статики):

Уравнения статики. Сопромат

Наш видеоурок построения эпюр внутренних силовых факторов для балки:

Правила знаков для внутренних силовых факторов

Для определения знаков внутренних усилий, возникающих в брусе при различных способах его нагружения, приняты следующие правила:

  • при растяжении/сжатии — положительными являются растягивающие усилия;
  • при кручении — положительны моменты, стремящиеся повернуть рассматриваемую часть вала против хода часовой стрелки;
  • при изгибе — положительны моменты сжимающие верхний слой балки.

Эпюры внутренних силовых факторов

В инженерной практике особое место занимает умение ясно представить взаимодействие сил в конструкции, а также связь между внешними и внутренними силами в элементах конструкции, для этого графически изображают внутренние силовые факторы в функции осевой координаты и называют эти графики — эпюрами.

Читайте также:  Импульсный блок питания регулируемое выходное напряжение

Источник



Изгиб.

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

деформация изгиба

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

правило знаков для поперечных сил

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

правило знаков для изгибающих моментов

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

дифференциальные зависимости между интенсивностью распределенной нагрузки и изгибающим моментом

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

общие закономерности эпюр поперечных сил и изгибающих моментов

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией, параллельной базе эпюре, а эпюра М — наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок, равный значению этой силы, а на эпюре М —точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок, равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М — по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение Mmax или Mmin (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

нормальные напряжения при изгибе

Моментом сопротивления сечения изгибу называется величина:

момент сопротивления сечения изгибу

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

формула журавского

где S отс — статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

Читайте также:  Какие напряжения возникают при наклонном

проверочный расчет на прочность при изгибе

2. При проектном расчете подбор сечения бруса производится из условия:

проектный расчет на прочность при изгибе

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

допускаемый изгибающий момент

Далее по полученному значению [Mx] определяют допускаемые значения внешних поперечных нагрузок [Q] и внешних изгибающих моментов [Mвнеш]. Условие прочности имеет вид:

допускаемые значения внешних поперечных нагрузок и внешних изгибающих моментов

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие — на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y — перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

механизм деформации балки при изгибе

Угол поворота сечения — угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

угол поворота сечения

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина.

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов Мf от приложенной нагрузки и М1 — от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

интеграл мора

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

правило верещагина

где Af – площадь эпюры изгибающего момента Мf от заданной нагрузки; yc – ордината эпюры от единичной нагрузки под центром тяжести эпюры Мf ; EIx – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (Af*yc) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра Мf должна быть разбита на простые фигуры(применяется так называемое «расслоение эпюры»), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

Источник