Меню

Работа двигателей при снижении напряжения

Снижение напряжения на зажимах электродвигателя

При невозможности замены малозагруженных двигателей следует проверить целесообразность снижения напряжения на его зажимах. Снижение напряжения питания АД приводит к уменьшению потребления реактивной мощности (за счет снижения тока намагничивания) и, тем самым, к повышению cosj. При этом одновременно уменьшаются потери активной мощности, т.е. увеличивается КПД двигателя. В некоторых случаях понижение напряжения требуется только для запуска двигателя и регуляторы можно назвать регуляторами пуска. В других случаях возможна длительная работа двигателей при пониженных напряжениях, что обеспечивается с помощью регуляторов напряжения. При этом регулятор используется и для запуска электродвигателя. Возможны следующие методы снижения напряжения у малозагруженных асинхронных двигателей:

· переключение статорной обмотки с «треугольника» на «звезду»;

· секционирование статорных обмоток;

· понижение напряжения в силовых цепях предприятий переключением ответвлений понижающих трансформаторов;

· применение регулируемого электропривода, позволяющего изменять напряжение на статоре АД в функции нагрузки (ЧРП, ТРН-АД).

Переключение статорной обмотки АД с «треугольника» на «звезду» обычно рекомендуют для двигателей напряжением до 1000В, загруженных менее чем на 30%. Эффективность мероприятий поясняется рисунками (здесь представлены графики для значений cos jн = 0,78; 0,82; 0,86; 0,9).

Величина момента, развиваемого асинхронным двигателем, пропорциональна квадрату напряжения питающей сети. Поэтому при переключении обмоток статора с «треугольника» на «звезду» вследствие снижения момента необходимо производить проверку по перегрузочной способности и величине пускового момента.

Секционирование рекомендуется, если невозможно воспользоваться предыдущим способом. Если двигатели изготовлены с параллельными ветвями в статорной обмотке, то секционирование осуществляют путем перепайки лобовых соединений обмотки. Если же обмотка выполнена одиночным проводом, то переключение секций обмотки возможно лишь при капитальном ремонте.

Переключение ответвлений понижающего трансформатора часто применяют на практике. Это производиться если трансформатор не питает одновременно другие приемники, которые не допускают снижения напряжения на их зажимах. Понижая напряжение питающей сети, следует помнить, что при этом возрастают потери и в самой сети. А в трансформаторах суммарные потери активной мощности при изменении напряжения в большинстве случаев не меняются.

Снижение напряжения влияет и на тепловой режим асинхронных двигателей. Так, при номинальной нагрузке и номинальной частоте питающей сети снижение напряжения на 10% приводит к росту перегрева двигателя также на 10%. Однако следует учитывать, что при загрузке двигателя, составляющей 90%, допустимо снижать напряжение на 13%, а при kЗ = 0,8 – напряжение можно снижать на 22%, без опасности перегрева двигателя свыше допустимого.

На практике используют отключение части приводных двигателей при недогрузке, например многодвигательного конвейера. Но это нецелесообразно, поскольку из-за вращения работающими двигателями неработающих приводных блоков потери мощности почти не уменьшаются. А износ редукторов, связанных с неработающими двигателями, может быть не меньше, чем у работающих.

На рис.а приведены зависимости тока от напряжения при различных моментах нагрузки. Как видно, при каждой нагрузке АД имеется такое напряжение, при котором потребляемый двигателем ток минимален.

Штриховая линия, проведенная через точки минимумов тока для каждой нагрузки, определяет закон регулирования напряжения в функции тока.

При реализации такого закона, при любой нагрузке из сети потребляется минимальный ток. Это приводит к существенному повышению КПД электропривода и эффективному использованию установленной мощности АД.

На рис.б представлены рабочие характеристики электропривода с переменной нагрузкой, питающегося от сети с частотой 50 Гц и номинальным напряжением 220В (сплошные линии) и от частотного преобразователя (пунктирные).

Как видно из характеристик, при уменьшении нагрузки от номинальной (Р=750 Вт) до минимальной (200 Вт) при питании АД (4АМ71В) от энергосберегающего устройства по сравнению с нерегулируемым электроприводом, потребляемая двигателем мощность Рп уменьшается от 8,7 до 61%, коэффициент полезного действия η увеличивается от 7 до 43%, коэффициент мощности cosφ от 6 до 36%.

Читайте также:  Что такое максимальное значение напряжения

Уровень оптимального фазного напряжения Uф.опт при тех же диапазонах изменения мощности на валу АД уменьшается до 50% номинального Uф.н. Таким образом, применение энергосберегающего устройства существенно улучшает технико-экономические и энергетические показатели установки.

6.6. Использование синхронной машины как компенсатора реактивной мощности

Работа системы электроснабжения характеризуется потреблением электроприемниками реактивной мощности. Это вызывает:

· дополнительные потери энергии в системе;

· снижение уровня напряжения и необходимость иметь повышенную пропускную способность подстанций и распределительных сетей, что снижает экономичность работы системы.

В связи с этим необходимо производить компенсацию реактивной мощности. Одним из эффективных способов компенсации является использование синхронной машины, которая за счет регулирования тока возбуждения может осуществлять генерацию реактивной мощности в электрическую сеть. В этом случае СД работает с опережающим cosj.

Возможность работы СД в качестве источника (компенсатора) реактивной мощности иллюстрируют V – образные характеристики (см. рисунок), которые представляют собой зависимости тока статора двигателя I1 и его cosj от тока возбуждения Iв при UФ = const, f1 = const и P1=const. Зависимости тока I1(Iв) имеют минимум, которому соответствует максимум коэффициента мощности cosj=1, что объясняется с помощью векторной диаграммы СД.

При небольших токах возбуждения ток статора I1 отстает от напряжения UФ на угол j, что соответствует работе СД с отстающим cosj и потреблению им реактивной мощности из питающей сети. Активная составляющая полного тока I=I1cosjсовпадает по направлению с вектором напряжения сети Uф, а реактивнаясоставляющая I отстает от него на 90°, что и определяет потребление реактивной мощности.

Пусть СД работает при постоянной нагрузке и потребляет из сети активную мощность

Пусть СД работает при постоянной нагрузке и потребляет из сети активную мощность Р1 = 3 UФ I1cosj = 3 UФ I.

Из выражения следует, что при P1 = const и ток I= const. Поэтому при увеличении тока возбуждения СД конец вектора полного тока I1 будет перемещаться вверх по штриховой вертикальной линии, что означает уменьшение реактивной составляющей тока. При некотором токе возбуждения, близком к номинальному, реактивная составляющая тока станет равной нулю, т.е. ток статора будет равен активной составляющей I. Этому режиму соответствует точка минимума кривых токов I1(Iв) и максимально возможное значение cosj =1.

При дальнейшем увеличении тока возбуждения (перевозбуждение СД) вновь появится реактивная составляющая тока I’, но уже опережающая напряжение сети на 90°. Ток статора I’1 также будет опережать напряжение сети и СД будет работать с опережающим cosj, отдавая реактивную энергию в питающую сеть.

На рисунке показаны зависимости при двух уровнях нагрузки – номинальной (Рн) и при холостом ходе (Рх). Область характеристик справа от штрих пунктирной линии cosj=1 соответствует работе СД с опережающим cosj, а слева – с отстающим. Из рисунка видно, что с ростом мощности нагрузки область генерации реактивной мощности (опережающего cosj) смещается в сторону больших токов возбуждения. Таким образом, если СД работает с пере­менной нагрузкой на валу, то для полного использования его компенсирующих свойств требуется соответствующее изменение его тока возбуждения, что ведет к увеличению габаритной мощности двигателя.

Отдаваемая или потребляемая реактивная мощность СД

Q = 3 Uф I1 sinj.

Отношение полной (габаритной) мощности к активной

Читайте также:  Система тока напряжение контактной сети

.

Пусть требуемая реактивная опережающая мощность составляет 40% активной мощности, т.е. Q/P = 0,4. Расчет по формуле показывает, что при этом отношение S/P составит 1,08, т.е. генерирование указанной реактивной мощности потребует увеличения габаритной мощности только на 8%.

Источник

Неисправности электрооборудования и способы их устранения — Работа асинхронного двигателя при неноминальных условиях

Содержание материала

  • Неисправности электрооборудования и способы их устранения
  • Устройство силового трансформатора
  • Принцип действия трансформатора, хх и кз
  • Пускорегулирующая аппаратура
  • Устройство электрических машин постоянного тока
  • Принцип действия генератора и двигателя постоянного тока
  • Двигатели постоянного тока с различными системами возбуждения
  • Устройство синхронных машин
  • Низкое сопротивление изоляции обмоток электрических машин
  • Пропитка и сушка обмоток электрических машин
  • Сушка обмоток силовых трансформаторов
  • Способы сушки обмоток силовых трансформаторов
  • Определение качества трансформаторного масла
  • Механические неисправности электрических машин
  • Работа асинхронного двигателя при неноминальных условиях
  • Внутренний обрыв одной фазы статора асинхронного двигателя
  • Другие неисправности асинхронного двигателя
  • Неисправности обмоток статора и ротора асинхронного двигателя
  • Соединение обмотки асинхронного двигателя с корпусом
  • Междуфазное замыкание двигателя
  • Маркировка выводных концов электрических машин переменного тока
  • Определение паспортных данных асинхронного электродвигателя
  • Установки повышенной частоты из двух асинхронных машин и их неисправности
  • Неисправности машин постоянного тока и способы их устранения
  • Маркировка выводных концов машин постоянного тока, паспортные данные
  • Неисравности синхронных машин и способы их устраненияе
  • Неисправности силовых трансформаторов и способы их устранения
  • Разборка и сборка, маркировка выводных концов трансформатора
  • Неисправности пускорегулирующей аппаратуры и способы их устранения
  • Вопросы по технике безопасности при испытаниях и ремонте электрооборудования

НЕИСПРАВНОСТИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ И СПОСОБЫ ИХ УСТРАНЕНИЯ
Работа асинхронного двигателя при неноминальных условиях
Отклонение напряжения питающей сети от номинального значения. Напряжение сельских электрических сетей колеблется в значительных пределах. Допускается отклонение напряжения у потребителей ±7,5%.
При пониженном напряжении сети уменьшается намагничивающий ток двигателя (ток холостого хода), снижается частота вращения ротора, увеличивается скольжение, растет роторный ток.
При пуске двигателя под нагрузкой резко уменьшаются пусковой и максимальный моменты и двигатель может не развернуться. Величина статорного тока при значительных нагрузках двигателя обыкновенно увеличивается, что ведет к перегреву обмоток статора и ротора. При значительном понижении напряжения двигатель может остановиться, при этом он потребляет очень большой ток.
При повышенном напряжении сети увеличивается намагничивающий ток двигателя (ток холостого хода), что ведет к перегреву активной стали статора; несколько увеличивается частота вращения; уменьшается скольжение; уменьшается роторный ток. Пусковой и максимальный моменты двигателя возрастают.
При значительных повышениях напряжения двигатель на холостом ходу потребляет ток, близкий к номинальному, а под нагрузкой величина статорного тока может быть выше номинального значения. Коэффициент мощности двигателя уменьшается, обмотка статора перегревается за счет теплопередачи от чрезмерно нагретой активной стали и от протекающего по ней тока.
Из сказанного следует, что отклонение напряжения сети от номинального значения чаще всего приводит к перегреву обмотки двигателя, перегрев обмотки в сильной степени сокращает срок службы изоляции. В конечном счете происходит пробой изоляции между обмоткой и корпусом, между фазами статора или между витками.
При отклонениях напряжения необходимо уменьшить нагрузку, чтобы ток статора был номинальным. В некоторых случаях можно увеличить или уменьшить напряжение путем перестановки анцапфного переключателя трансформатора. Иногда приходится увеличивать сечение проводов питающей сети.
Асимметрия напряжения питающей сети. При неравномерной нагрузке фаз сети напряжение становится асимметричным — неодинаковым между отдельными фазами. Асимметрия напряжения приводит к тому, что токи в фазах обмотки статора электродвигателя резко отличаются один от другого. Фаза с большим током может перегреваться выше допустимых пределов даже при небольшой асимметрии напряжения. Кроме того, перегревается активная сталь ротора двигателя. Асимметрия напряжения мало влияет на момент двигателя и на частоту вращения. Асимметрию напряжения можно обнаружить с помощью вольтметра, а также измерением величины тока в отдельных фазах двигателя, например токоизмерительными клещами. При асимметрии напряжения необходимо уменьшить нагрузку на электродвигатели и устранить неравномерную нагрузку фазы.
Обрыв фазы питающей сети. При обрыве фазы сети работающие трехфазные двигатели переходят в однофазный режим.
Если нагрузка двигателя до обрыва фазы была не более 60% номинальной, то двигатель продолжает работать с несколько худшими энергетическими показателями, частота вращения ротора уменьшается незначительно, температура обмоток находится в допустимых пределах. При больших нагрузках обмотка двигателя чрезмерно перегревается, а в отдельных случаях ротор двигателя останавливается и по двум фазам обмотки статора течет большой ток. Двигатель после остановки не может быть запущен даже на холостом ходу, так как в двигателе при однофазном токе получается пульсирующее магнитное поле. Обрыв одной из фаз питающей сети чаще всего бывает вследствие перегорания плавкой вставки, защищающей двигатель. При подозрении на обрыв одной из фаз сети следует двигатель остановить и пустить его вновь на холостом ходу. Если фаза оборвана, то двигатель гудит и не разворачивается.
Отсутствующую фазу можно найти с помощью вольтметра. Для этого питающие провода отключают от двигателя и ставят gод напряжение, вольтметр следует включать между линейными проводами: первым и вторым, вторым и третьим, третьим и первым. Вольтметр покажет напряжение из трех включений только один раз на целых проводах.
При обрыве фазы питающей сети все двигатели останавливают и принимают меры к восстановлению нормального напряжения.

Читайте также:  Стабилизатор напряжения 220в для дома 12квт настенный

Источник



Влияние напряжения сети на механическую характеристику асинхронной машины

Поскольку в питающих сетях присутствует падения напряжений, которые могут вызываться различными факторами (нехваткой мощности сети, прямой пуск электроприводов большой мощности и так далее), то эти падения имеют негативное влияние на работу асинхронных электроприводов. Рассмотрим почему.

Как известно момент, который будет развивать асинхронный электродвигатель, в не зависимости от скольжения машины, всегда будет пропорционален квадрату напряжения приложенного к его обмоткам:

Где: m 1 – количество фаз питающего напряжения, ω 0 – скорость холостого хода измеряемая в радианах в секунду – рад/с.

Ток двигателя буде таким:

Подставив в эти выражения значения скольжения, напряжения и тока получим определенное семейство характеристик асинхронного электродвигателя при различных значениях напряжения на зажимах электродвигателя.

Данные характеристики построены не в стандартных осях момента М и скольжения s, а в относительных единицах.

Из приведенных выше характеристик четко видно, что скольжение асинхронной машины не зависит от изменений питающего напряжения. Устойчива работа электропривода возможна со статическим моментом только на участке от синхронной скорости до критического скольжения (s к). Соответственно при снижении напряжения питания эта зона существенно снижается. Также у асинхронного электродвигателя значительно снижается пусковой момент, что делает невозможным его запуск с номинальным моментом при значительном снижении напряжения питающей сети.

Так как снижение напряжения наблюдается не только в бытовых но и в промышленных сетях, необходимо убедится, что значения критического и пускового момента асинхронного электродвигателя будут удовлетворять заданным параметрам рабочего органа даже при минимально возможном напряжении питания данной сети. Это необходимо для безаварийной и надежной работы систем.

Источник