Меню

При синусоидальном напряжении определить ток

Решение типовых задач. Синусоидальные токи, напряжения

Синусоидальные токи, напряжения. Параметры идеальных элементов электрических цепей синусоидального тока

Общие сведения

Электромагнитный процесс в электрической цепи считается периодическим, если мгновенные значения напряжений и токов повторяются через равные промежутки времени Т. Время Т называется периодом. Напряжения u(t) = u(t+T) и токи i(t)=i(t+T) ветвей электрической цепи являются периодическими функциями времени.

Величина, обратная периоду (число периодов в единицу времени), называется частотой: f = 1/T. Частота имеет размерность 1/c, а единицей измерения частоты служит Герц (Гц).

Широкое применение в электротехнике нашли синусоидальные напряжения и токи:

В этих выражениях:

u(t), i(t) – мгновенные значения,

Um, Im – максимальные или амплитудные значения,

ω = 2π/T = 2πf – угловая частота (скорость изменения аргумента),

ψu, ψi – начальные фазы,

ωt + ψu, ωt + ψi – фазы, соответственно напряжения и тока.

Графики изменения u(t), i(t) удобно представлять не в функции времени t, а в функции угловой величины ωt , пропорциональной t (рис. 1.1).

Величина φ = (ωt + ψu) – (ωt + ψi) = ψu, — ψi называется углом сдвига фаз. На рис. 1.1 ψu > 0, ψi > 0, φ = ψuψi > 0, т.е. напряжение опережает ток. Аналогично можно ввести понятие углов сдвига фаз между двумя напряжениями или токами.

Количество тепла, рассеиваемого на сопротивление R при протекании по нему тока, электромагнитная сила взаимодействия двух проводников с равными токами, пропорциональны квадрату тока. Поэтому о величине тока судят по действующему значению за период. Действующее значение периодического тока i(t) определяется по выражению

Для квадратов левой и правой частей этого равенства, после умножения их на RT, будем иметь:

Из этого равенства следует, что действующее значение периодического тока равно по величине такому постоянному току I, который на неизменном сопротивлении R за время T выделяет тоже количество тепла, что и ток i(t).

При синусоидальном токе i(t) = Im sin ωt интеграл

Следовательно, действующее значение синусоидального тока равно

Действующее значение синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Для измерения действующих значений используются приборы электромагнитной, электродинамической, тепловой и др. систем.

Среднее значение синусоидального тока определяется как среднее за половину периода. Поэтому,

Средние значения синусоидальных напряжений u(t), э.д.с. e(t) определяются аналогично:

Отношение амплитудного значения к действующему называется коэффициентом амплитуды ka, а отношение действующего значения к среднему – коэффициентом формы kф. Для синусоидальных величин, например, тока i(t), эти коэффициенты равны:

Для синусоидальных токов i(t) = Im sin(ωt + ψi) уравнения идеальных элементов R, L, C при принятых на рис. 1.2. положительных направлениях имеют вид

На активном сопротивлении R мгновенные значения напряжения и тока совпадают по фазе. Угол сдвига фаз φ = 0.

На индуктивности L мгновенное значение тока отстает от мгновенного значения напряжения на угол . Угол сдвига фаз .

На емкости C мгновенное значение напряжения отстает от мгновенного значения тока на угол . Угол сдвига фаз .

Величины ωL и 1/ωC имеют размерность [Ом] и называются реактивным сопротивлением индуктивности или индуктивным сопротивлением XL:

и реактивным сопротивлением емкости или емкостным сопротивлением XС:

Величины 1/ωL и ωC имеют размерность [Ом -1 ] и называются реактивной проводимостью индуктивности или индуктивной проводимостью BL:

и реактивной проводимостью емкости или емкостной проводимостью BС:

Связь между действующими значениями напряжения и тока на идеальных элементах R, L, C устанавливают уравнения:

Для синусоидального напряжения u = Um sin ωt начальная фаза тока на входе пассивного двухполюсника (рис. 1.3.) равна

ψi = – φ, поэтому i = Im sin(ωt – φ)

Проекция напряжения на линию тока

называется активной составляющей напряжения.

Проекция напряжения на линию, перпендикулярную току,

называется реактивной составляющей напряжения.

Проекция тока на линию напряжения

называется активной составляющей тока.

Проекция тока на линию, перпендикулярную напряжению,

называется реактивной составляющей тока.

Имеют место очевидные соотношения:

В цепи синусоидального тока для пассивного двухполюсника по определению вводятся следующие величины:

1. Полное сопротивление Z:

2. Эквивалентные активное Rэк и реактивное Xэк сопротивления:

3. Полная проводимость Y:

4. Эквивалентные активная Gэк и реактивная Bэк проводимости:

Из треугольников сопротивлений и проводимостей (рис. 1.4) следует:

Эквивалентные параметры являются измеряемыми величинами, поэтому могут быть определены из физического эксперимента (рис. 1.5).

Электрическая цепь по схеме рис. 1.5 должна содержать амперметр А и вольтметр U для измерения действующих значений напряжения и тока, фазометр φ для измерения угла сдвига фаз между мгновенными значениями напряжения и тока на входе пассивного двухполюсника П.

Угол сдвига фаз пассивного двухполюсника .

Физическая величина, численно равная среднему значению от произведения мгновенных значений напряжения u(t) и тока i(t), называется активной мощностью Р.По определению имеем:

называются полной мощностью S и реактивной мощностью Q в цепи синусоидального тока. Имеет место равенство

Коэффициент мощности kм в цепи синусоидального тока определяется выражением:

Единицей измерения активной мощности является Ватт [Вт]. Для измерения активной мощности служит ваттметр. Ваттметр включается по схеме рис. 1.6.

Единица измерения полной мощности [ВА], реактивной – [ВАр].

Для вычисления мощностей удобно использовать следующие выражения:

Решение типовых задач

Для измерения мгновенных значений напряжений u(t) и токов i(t) служит осциллограф. Поскольку сопротивление входа этого прибора очень большое, непосредственно для измерения тока осциллограф использовать нельзя. Измеряют не ток, а пропорциональное току напряжение на шунте Rш (рис. 1.7, а).

Задача 1.1

К источнику синусоидального напряжения частотой f = 50 Гц подключена катушка индуктивности (рис. 1.7, а). Активное сопротивление провода, из которого изготовлена катушка, R = 10 Ом, индуктивность L = 1,6 мГн. Осциллограмма напряжения uш(t) представлена на рис. 1.7, б. Сопротивление шунта Rш = 0,1 Ом. Масштаб по вертикальной оси осциллограммы mu = 0,02 В/дел (0,02 вольта на деление).

Рассчитать действующие значения напряжения uRL, составляющих uR и uL этого напряжения. Построить графики мгновенных значений напряжений uRL, составляющих uR и uL.

Решение.

По осциллограмме рис. 1.7, б двойная амплитуда напряжения на шунте 2А = 10 дел. Находим амплитудное значение Im тока i:

Реактивное сопротивление Х индуктивности L на частоте

Амплитудные значения напряжений uR и uL:

Мгновенные значения составляющих напряжения на сопротивление R катушки индуктивности и индуктивности L соответственно равны (ψi = 0):

Мгновенное значение напряжения на активном сопротивлении в фазе с током, на индуктивности – опережает на угол .

Действующие значения напряжений:

Векторные диаграммы напряжений и тока приведены на рис. 1.8.

Зависимости uR(ωt); uL(ωt); uRL(ωt) представлены на рис. 1.9.

Задача 1.2

К цепи со схемой рис.1.10 приложено синусоидальное напряжение u = 141 sin 314t B.

Найти мгновенные и действующие значения тока и напряжения на всех участках цепи, если R = 30 Ом,

С = 79,62 мкФ.

Решение.

Назначаем положительные направления тока и напряжений как на рис. 1.10. Определяем реактивное сопротивление ХС емкости C на частоте ω = 314с -1 :

Полное сопротивление цепи:

– напряжения на резисторе R: ;

Читайте также:  Допустимый перекос фаз по току двигателя

– напряжения на емкости С: .

Угол сдвига фаз между напряжением u и током i:

Начальная фаза тока i определяется из соотношения . Откуда,

Мгновенные значения тока и напряжений на участках цепи:

Задача 1.3

Для пассивного двухполюсника (рис. 1.5) экспериментально определены:

U = 10 В; I = 2 А; φ = 30 о .

Найти полное и эквивалентные активное и реактивное сопротивления двухполюсника.

Решение.

Имеем по определению:

Задача 1.4

По цепи по схеме рис. 1.10 действующие значения тока i на частотах

f1 = 500 Гц и f2 = 1000 Гц равны, соответственно, I1 = 1 А и I2 = 1,8 А.

Определить параметры цепи R и C, если на этих частотах напряжение на входе U = 100 В.

Решение.

По определению на частотах f1 и f2 имеем:

Непосредственно по схеме цепи рис. 1.10 находим:

Значения параметров R и С найдем из решения системы уравнений

Программа расчета в пакете MathCAD.

U:=100 f1:=500 f2:=1000 I1:=1 I2:=1.8 ←Присвоение переменным заданных условием задачи величин.
←Расчет полных сопротивлений на частотах f1 и f2.
←Расчет угловой частоты.
←Задание приближенных значений параметров R и C цепи.
Giver
←Решение системы нелинейных уравнений. Для набора «=» нажмите [Ctrl]=.
←Присвоение вектору RC найденных значений параметров R и C цепи.

Значения параметров цепи: .

Задача 1.5

Вычислить действующее значение тока и активную мощность на входе пассивного двухполюсника с эквивалентными активной проводимостью

G = 0,011 Ом -1 и реактивной проводимостью B = 0,016 Ом -1 . Напряжение на входе двухполюсника U = 30 В.

Решение.

Действующее значение тока

Задача 1.6

Действующее значение синусоидального тока ветви с резистором R равно 0, 1 А (рис. 1.11). Найти действующие значения напряжения u, и токов iL и i, если R = 430 Ом; XL = 600 Ом. Чему равна активная, реактивная и полная мощности этого двухполюсника?

Решение.

Положительные направления напряжения и токов указаны на рис. 1.11.

Действующее значение тока IR = 0,1 А.

По закону Ома U = IRR = 0,1∙430 = 43 В.

Действующее значение тока I можно вычислить, определив полную проводимость Y цепи. По виду схемы имеем

Задача 1.7

Действующее значение синусоидального напряжения на емкости С в цепи со схемой рис. 1.10 UС = 24 В. Найти действующее значение напряжения u и тока i, если XC = 12 Ом; R = 16 Ом.

Решение.

Определяем действующее значение тока i

Полное сопротивление цепи

Определяем действующее значение напряжения u

Задача 1.8

Для определения эквивалентных параметров пассивного двухполюсника в цепи синусоидального тока были сделаны измерения действующих значений напряжения, тока и активной мощности (рис. 1.12).

A → 0,5 A, U → 100 B, W → 30 Вт.

Для определения характера реактивного сопротивления (проводимости) параллельно двухполюснику была включена емкость С (ВС ˂ Вэк). При этом показания амперметра уменьшились. Рассчитать эквивалентные сопротивления и проводимости двухполюсника.

Решение.

Действующее значение: I = 0,5 A, U = 100 B. Активная мощность, потребляемая двухполюсником, P = 30 Вт. Полное сопротивление двухполюсника

Эквивалентное активное сопротивление

Эквивалентное реактивное сопротивление

Характер реактивного сопротивления индуктивный (Хэк = ХL, φ > 0). После включения параллельно двухполюснику емкости С, ток I’ ˂ I. Этому случаю соответствует векторная диаграмма рис. 1.13 а. Емкостному характеру соответствует векторная диаграмма рис. 1.13 б.

Полная проводимость двухполюсника

Эквивалентная активная проводимость

Эквивалентная реактивная проводимость

Следует обратить внимание, что треугольники сопротивлений и проводимостей для одного и того же двухполюсника подобны (рис. 1.4). Поэтому,

1.3. Задачи и вопросы для самоконтроля

1. Какими параметрами описываются синусоидальные токи в электрических цепях?

2. Как связаны между собой круговая частота ω и период Т синусоидального тока?

3. Что такое действующее значение переменного тока?

4. Запишите формулы для вычисления индуктивного и емкостного сопротивлений.

5. Объясните, как определить напряжение на участке цепи, если заданы и r и x.

6. Нарисуйте треугольник сопротивлений и треугольник проводимостей с необходимыми обозначениями.

7. Запишите формулы для вычисления активной и реактивной мощностей.

8. Напряжение на индуктивности L = 0,1 Гн в цепи синусоидального тока изменяется по закону . Найти мгновенное значение тока и индуктивности.

9. Ток в емкости С = 0,1 мкФ равен . Найти мгновенное значение напряжения на емкости.

10. На участке цепи с последовательно включенными активным сопротивлением R = 160 Ом и емкостью С = 26,54 мкФ мгновенное значение синусоидального тока . Найти мгновенные значения напряжений на емкости и на всем участке цепи. Чему равны действующие значения этих величин?

Дата добавления: 2016-01-29 ; просмотров: 84750 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник



Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник

Синусоидальный ток и его основные параметры

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

Читайте также:  Постоянный электрический ток закон ома для постоянного тока

Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Величина обратная частоте называется периодом колебания T=1/f (с). Определение периода звучит так период это время полного колебания. Если представить себе маятник часов, то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока — это максимальное значение тока, которое он достигает за период колебания. Опять же, если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

Начальная фаза синусоидального тока — это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Математически синусоидальный ток описывается уравнением:

где i — мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Im — амплитуда тока.

j — начальная фаза.

w — угловая частота выражается как угловая частота —

Синусоидальный ток характеризуется амплитудой Im и периодом T.

Энергетические характеристики синусоидальных сигналов обычно описываются действующими значениями тока I, равными среднеквадратичному за период значению:

Аналогично вводятся действующие значения напряжения U и напряжения ЭДС E. Действующие значения наиболее часто используют для характеристики интенсивности синусоидальных сигналов: электроизмерительные приборы проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений. Для синусоидальных величин вычисление интеграла в последнем выражении приводит к соотношениям:

Способы представления синусоидального тока

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно: i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.

Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

Аналитический способ

Для тока: i(t) = Im sin(ωt + ψi), для напряжения: u(t) = Um sin (ωt +ψu), для ЭДС: e(t) = Em sin (ωt +ψe),

Im, Um, Em – амплитуды тока, напряжения, ЭДС;

значение в скобках – фаза (полная фаза);

ψi, ψu, ψe – начальная фаза тока, напряжения, ЭДС;

ω – циклическая частота, ω = 2πf;

f – частота, f = 1 / T; Т – период.

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени i(t) = Im sin(ωt — ψi).

Графоаналитический способ

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

i1(t) = Im1 sin(ωt)→ i2(t) = Im2 sin(ωt + ψ2) →i(t) = ?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt — ψ2) = Im sin(ωt + ψ).

Приравниваем проекции на вертикальную и горизонтальные оси

Im sin ψ = Im2 sin ψ2; Im cos ψ = Im2 cos ψ2 + Im1;

Источник

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с -1 )

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).

Среднее и действующее значения синусоидально изменяющейся величины.

Под средним значением синусоидально изменяющей­ся величины понимают ее среднее значение за полпериода. Среднее значение тока

(3.4)

т. е. среднее значение синусоидального тока составляет 2/ = 0,638 от амплитудного. Аналогично,

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока

(3.5)

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично

Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Читайте также:  Статические характеристики двигателя постоянного тока его

Большинство измерительных приборов показывают действующее значение измеряемой величины.

Коэффициент амплитуды кa это отношение амплитуды периодически изменяющейся функции к ее действующему значению. Для синусоидального тока

Под коэффициентом формы кфпонимают отношение действующего значения периодически изменяющейся функции к ее среднему за полпе­риода значению. Для синусоидального тока

(3.7)

Сложение и вычитание синусоидальных функций времени на комплексной плоскости. Векторная диаграмма.

Положим, что необходимо сложить два тока (i1 и i2) одинаковой частоты. Сумма их дает некоторый ток той же частоты:

Требуется найти амплитуду Iт и начальную фазу ψ тока i. С этой целью ток i1 изобразим на комплексной плоскости (рис. 3.4) вектором = Iе j ψ1 , а ток i2 — вектором = Iе j ψ2 . Геометрическая сумма векторов и I даст комплексную амплитуду суммарного тока Iт = Iт e — jψ 2 . Амплитуда тока Iт определяется длиной суммарного вектора, а начальная фаза ψ — углом, образованным этим вектором и осью + 1.

Для определения разности двух токов (ЭДС, напряжений) следует на комплексной плоскости произвести не сложение, а вычитание соответствующих векторов.

Обратим внимание на то, что если бы векторы , ,Iт стали вращаться вокруг начала координат с угловой скоростью ω, то взаимное расположение векторов относительно друг друга осталось бы без изменений.

Векторной диаграммойназывают совокупность векторов на комплексной плоскости, изображающих синусоидально изменяющиеся функции времени одной и той же частоты и построенных с соблюдением правильной ориентации их относительно друг друга по фазе. Пример на рис. 3.4.

Мгновенная мощность.

Протекание синусоидальных токов по участкам электрической цепи сопровождается потреблением энергии от источников. Скорость поступления энергии характеризуется мощностью. Под мгновенным значением мощности, или под мгновенной мощностью, понимают произведение мгновенного значения напряжения и на участке цепи на мгновенное значение тока i, протекающего по этому участку:

(3.14)

где р — функция времени.

Перед тем как приступить к изучению основ расчета сложных цепей синусоидального тока, рассмотрим соотношения между токами и напряжениями в простейших цепях, векторные диаграммы для них и кривые мгновенных значений различных величин. Элементами реальных цепей синусоидального тока являются резисторы, индуктивные катушки и конденсаторы. Протеканию синусоидального тока оказывают сопротивление резистивные элементы (резисторы) — в них выделяется энергия в виде теплоты — и реактивные элементы (индуктивные катушки и конденсаторы) — они то запасают энергию в магнитном (электрическом) поле, то отдают ее. Рассмотрим поведение этих элементов.

Комплексная проводимость.

Под комплексной проводимостью Y понимают величину, обратную комплексному сопротивлению Z:

(3.37)

Единица комплексной проводимости — См (Ом -1 ). Действительную часть ее обозначают через g, мнимую — через b.

Если X положительно, то и b положительно. При X отрицательном b также отрицательно.

При использовании комплексной проводимости закон Ома (3.35) запи-сывают так:

(3.39)

где Ia — активная составляющая тока;Ir реактивная составляющая ; тока; U — напряжение на участке цепи, сопротивление которого равно Z.

Определение дуальной цепи.

Две электрические цепи называют дуальными, если закон изменения контурных токов в одной из них подобен закону изменения узловых потенциалов в другой. Исходную и дуальную ей схемы называют взаимно обратными.

В качестве простейшего примера на рис. 3.32изображены две дуальные цепи.

Схема на рис. 3.32, а состоит из источника ЭДС Е и последовательно с ним включенных активного, индуктивного и емкостного элементов (R, L, С). Схема на рис. 3.32б состоит из источника тока J3 и трех параллельных ветвей. Первая ветвь содержит активную проводимость gэ вторая — емкость Сэ, третья — индуктивность Zэ.

Для того чтобы показать, какого рода соответствие имеет место в дуальных цепях, составим для схемы на рис. 3.32, а уравнение по методу контурных токов:

(3.85)

а для схемы на рис. 3.32б — по методу узловых потенциалов, обозначив потенциал точки а через φа, положив равным нулю потенциал второго узла:

(3.86)

Если параметры gэ, Lэ. Сэ, схемы (рис. 3.32б) согласовать с параметрами R, L, С схемы (рис. 3.32а) таким образом, что

(3.87)

где к — некоторое произвольное число (масштабный множитель преоб-разования), Ом 2 , то

(3.88)

С учетом равенства (3.88) перепишем уравнение (3.86) следующим об-разом:

(3.89)

Из сопоставления уравнений (3.85) и (3.89) следует, что если ток Jэ источника тока в схеме на рис. 3.32б изменяется с той же угловой частотой, что и ЭДС Е в схеме на рис. 3.32а, и численно равен E , а параметры обеих схем согласованы в соответствии с уравнением (3.87), то при к = 1Ом 2 . закон изменения во времени потенциала φ в схеме на рис. 3.32б совпадет с законом изменения во времени тока I в схеме на рис. 3.32а.

Если свойства какой-либо из схем изучены, то они полностью могут быть перенесены на дуальную ей схему.

Между входным сопротивлением Zисх исходного двухполюсника и входной проводимостью Yдуал дуального ему двухполюсника существует соотношение Zисх =k Yдуал

Из (3.88) получаем соотношение между частотной характеристикой чисто реактивного исходного двухполюсника Хисх(ω) и частотной характеристикой дуального ему тоже чисто реактивного двухполюсника b дуал (ω). Каждому элементу исходной схемы (схемы с источниками ЭДС E и параметрами R, L, С) отвечает свой элемент эквивалентной дуальной схемы (схемы с источниками тока J3 и параметрами gэ, Сэ, Lэ).

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

(3.1)

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают Im.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

(3.2)

Угловая частота (единица угловой частоты — рад/с или с -1 )

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j (t)).

Источник

При синусоидальном напряжении определить ток

Переменный (синусоидальный) ток и основные характеризующие его величины.

ads

Переменный ток (англ. alternating current — AC) — электрический ток, который с течением времени изменяется по величине и направлению или, в частном случае, изменяется по величине, сохраняя своё направление в электрической цепи неизменным.

В быту для электроснабжения переменяется переменный, синусоидальный ток.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (Рисунок 1):

Синусоидальный ток

Рисунок 1

Формула переменного синусоидального тока

Максимальное значение функции называют амплитудой. Её обозначают с помощью заглавной (большой) буквы и строчной буквы m — максимальное значение. К примеру:

  • амплитуду тока обозначают lm;
  • амплитуду напряжения Um.

Период Т— это время, за которое совершается одно полное колебание.

Частота f равна числу колебаний в 1 секунду (единица частоты f — герц (Гц) или с -1 )

f = 1/T

Угловая частота ω (омега) (единица угловой частоты — рад/с или с -1 )

ω = 2πf = 2π/T

Аргумент синуса, т. е. (ωt + Ψ), называют фазой. Фаза характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой (ω) и начальной фазой Ψ (пси)

В странах СНГ и Западной Европе наибольшее распространение получили установки синусоидального тока частотой 50 Гц, принятой в энергетике за стандартную. В США стандартной является частота 60 Гц. Диапазон частот практически применяемых синусоидальных токов очень широк: от долей герца, например в геологоразведке, до миллиардов герц в радиотехнике.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью ламповых или полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j (или e(t) и j(t)).

Обратите внимание! При обозначении величин на схемах или в расчетах важен регистр букв, то есть заглавные буквы (E,I,U…) или строчные (e, i ,u…). Так как строчными буквами принято обозначать мгновенное значение, а заглавными могут обозначаться действующее значение величины (подробнее о действующем значении в следующей статье).

Источник

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают I m.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

Угловая частота (единица угловой частоты — рад/с или с -1 )

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j ( t)).

Среднее и действующее значения синусоидально изменяющейся величины.

Под средним значением синусоидально изменяющей­ся величины понимают ее среднее значение за полпериода. Среднее значение тока

т. е. среднее значение синусоидального тока составляет 2/ = 0,638 от амплитудного. Аналогично,

Широко применяют понятие действующего значения синусоидально изменяющейся величины (его называют также эффективным или среднеквадратичным). Действующее значение тока

Следовательно, действующее значение синусоидального тока равно 0,707 от амплитудного. Аналогично

Читайте также:  Каким будет направление индукционного тока в катушке если увеличить скорость движения магнита

Действующее значение синусоидального тока I численно равно значению такого постоянного тока, который за время, равное периоду синусоидального тока, выделяет такое же количество теплоты, что и синусоидальный ток.

Большинство измерительных приборов показывают действующее значение измеряемой величины.

Коэффициент амплитуды к a — это отношение амплитуды периодически изменяющейся функции к ее действующему значению. Для синусоидального тока

Под коэффициентом формы к ф —понимают отношение действующего значения периодически изменяющейся функции к ее среднему за полпе­риода значению. Для синусоидального тока

Сложение и вычитание синусоидальных функций времени на комплексной плоскости. Векторная диаграмма.

Положим, что необходимо сложить два тока ( i 1 и i 2) одинаковой частоты. Сумма их дает некоторый ток той же частоты:

Требуется найти амплитуду I т и начальную фазу ψ тока i. С этой целью ток i 1 изобразим на комплексной плоскости (рис. 3.4) вектором = I 1те j ψ1 , а ток i 2 — вектором = I 2те j ψ2 . Геометрическая сумма векторов и I 2т даст комплексную амплитуду суммарного тока I т = I т e — jψ 2 . Амплитуда тока I т определяется длиной суммарного вектора, а начальная фаза ψ — углом, образованным этим вектором и осью + 1.

Для определения разности двух токов (ЭДС, напряжений) следует на комплексной плоскости произвести не сложение, а вычитание соответствующих векторов.

Обратим внимание на то, что если бы векторы , ,I т стали вращаться вокруг начала координат с угловой скоростью ω, то взаимное расположение векторов относительно друг друга осталось бы без изменений.

Векторной диаграммойназывают совокупность векторов на комплексной плоскости, изображающих синусоидально изменяющиеся функции времени одной и той же частоты и построенных с соблюдением правильной ориентации их относительно друг друга по фазе. Пример на рис. 3.4.

Протекание синусоидальных токов по участкам электрической цепи сопровождается потреблением энергии от источников. Скорость поступления энергии характеризуется мощностью. Под мгновенным значением мощности, или под мгновенной мощностью, понимают произведение мгновенного значения напряжения и на участке цепи на мгновенное значение тока i, протекающего по этому участку:

где р — функция времени.

Перед тем как приступить к изучению основ расчета сложных цепей синусоидального тока, рассмотрим соотношения между токами и напряжениями в простейших цепях, векторные диаграммы для них и кривые мгновенных значений различных величин. Элементами реальных цепей синусоидального тока являются резисторы, индуктивные катушки и конденсаторы. Протеканию синусоидального тока оказывают сопротивление резистивные элементы (резисторы) — в них выделяется энергия в виде теплоты — и реактивные элементы (индуктивные катушки и конденсаторы) — они то запасают энергию в магнитном (электрическом) поле, то отдают ее. Рассмотрим поведение этих элементов.

Под комплексной проводимостью Y понимают величину, обратную комплексному сопротивлению Z:

Единица комплексной проводимости — См (Ом -1 ). Действительную часть ее обозначают через g, мнимую — через b.

Если X положительно, то и b положительно. При X отрицательном b также отрицательно.

При использовании комплексной проводимости закон Ома (3.35) запи-сывают так:

где I a — активная составляющая тока; I r — реактивная составляющая ; тока; U — напряжение на участке цепи, сопротивление которого равно Z.

Определение дуальной цепи.

Две электрические цепи называют дуальными, если закон изменения контурных токов в одной из них подобен закону изменения узловых потенциалов в другой. Исходную и дуальную ей схемы называют взаимно обратными.

В качестве простейшего примера на рис. 3.32изображены две дуальные цепи.

Схема на рис. 3.32, а состоит из источника ЭДС Е и последовательно с ним включенных активного, индуктивного и емкостного элементов ( R, L, С). Схема на рис. 3.32 б состоит из источника тока J 3 и трех параллельных ветвей. Первая ветвь содержит активную проводимость g э вторая — емкость С э, третья — индуктивность Z э.

Для того чтобы показать, какого рода соответствие имеет место в дуальных цепях, составим для схемы на рис. 3.32, а уравнение по методу контурных токов:

Читайте также:  Ад31т 80х8 номинальный ток

а для схемы на рис. 3.32 б — по методу узловых потенциалов, обозначив потенциал точки а через φ а, положив равным нулю потенциал второго узла:

Если параметры g э, L э. С э, схемы (рис. 3.32 б) согласовать с параметрами R, L, С схемы (рис. 3.32 а) таким образом, что

где к — некоторое произвольное число (масштабный множитель преоб-разования), Ом 2 , то

С учетом равенства (3.88) перепишем уравнение (3.86) следующим об-разом:

Из сопоставления уравнений (3.85) и (3.89) следует, что если ток J э источника тока в схеме на рис. 3.32 б изменяется с той же угловой частотой, что и ЭДС Е в схеме на рис. 3.32 а, и численно равен E , а параметры обеих схем согласованы в соответствии с уравнением (3.87), то при к = 1Ом 2 . закон изменения во времени потенциала φ 0 в схеме на рис. 3.32 б совпадет с законом изменения во времени тока I в схеме на рис. 3.32 а.

Если свойства какой-либо из схем изучены, то они полностью могут быть перенесены на дуальную ей схему.

Между входным сопротивлением Z исх исходного двухполюсника и входной проводимостью Y дуал дуального ему двухполюсника существует соотношение Z исх =k Y дуал

Из (3.88) получаем соотношение между частотной характеристикой чисто реактивного исходного двухполюсника Х исх(ω) и частотной характеристикой дуального ему тоже чисто реактивного двухполюсника b дуал (ω). Каждому элементу исходной схемы (схемы с источниками ЭДС E и параметрами R, L, С) отвечает свой элемент эквивалентной дуальной схемы (схемы с источниками тока J 3 и параметрами g э, С э, L э).

Синусоидальный ток и основные характеризующие его величины.

Синусоидальный ток представляет собой ток, изменяющийся во времени по синусоидальному закону (рис. 3.1):

Максимальное значение функции называют амплитудой. Амплитуду тока обозначают I m.

Период Т — это время, за которое совершается одно полное колебание.

Частота f — число колебаний в 1 с (единица частоты f — герц (Гц) или с -1 ):

Угловая частота (единица угловой частоты — рад/с или с -1 )

Аргумент синуса, т. е. ( t + ), называют фазой — характеризует состояние колебания (числовое значение) в данный момент времени t.

Любая синусоидально изменяющаяся функция определяется тремя величинами: амплитудой, угловой частотой и начальной фазой.

Синусоидальные токи и ЭДС сравнительно низких частот (до нескольких килогерц) получают с помощью синхронных генераторов (их изучают в курсе электрических машин). Синусоидальные токи и ЭДС высоких частот получают с помощью различных полупроводниковых генераторов (подробно рассматриваемых в курсе радиотехники и менее подробно — в курсе ТОЭ). Источник синусоидальной ЭДС и источник синусоидального тока обозначают на электрических схемах так же, как и источники постоянной ЭДС и тока, но обозначают их е и j(или e(t) и j ( t)).

Источник



Синусоидальный ток и его основные параметры

Синусоидальный ток представляет собой функцию времени. То есть в отличие от постоянного тока его значение меняется с течением времени. Основными характеристиками синусоидального тока являются. Амплитуда частота и начальная фаза.

Частота f это количество колебаний в единицу времени. За единицу времени в системе СИ принимается одна секунда. Таким образом, количество колебаний за секунду это и есть частота синусоидального тока. И измеряется она в Герцах. Величина обратная частоте называется периодом колебания T=1/f (с). Определение периода звучит так период это время полного колебания. Если представить себе маятник часов, то период это время за которое он совершит движение из одного крайнего положения в другое и обратно.

Амплитуда синусоидального тока — это максимальное значение тока, которое он достигает за период колебания. Опять же, если рассматривать на примере маятника, то амплитуда это расстояние от положения равновесия до одного из крайних положений.

Начальная фаза синусоидального тока — это то время, на которое отстает либо опережает синусоида начальный момент времени. Представим две синусоиды одна, из которых начинается условно в нуле а другая в 1. То можно сказать, что вторая синусоида отстаёт по фазе от первой. Если обе синусоиды начинаются в одной точке то можно сказать что они синфазные, то есть имеют одну фазу. При этом они обе могут отставать от начального момента времени на одну и ту же величину, то есть иметь одинаковую начальную фазу.

Читайте также:  Автор открытия переменный ток

Математически синусоидальный ток описывается уравнением:

где i — мгновенное значение тока это величина тока в определенный момент времени с учетом частоты и начальной фазы тока.

Im — амплитуда тока.

j — начальная фаза.

w — угловая частота выражается как угловая частота —

Синусоидальный ток характеризуется амплитудой Im и периодом T.

Энергетические характеристики синусоидальных сигналов обычно описываются действующими значениями тока I, равными среднеквадратичному за период значению:

Аналогично вводятся действующие значения напряжения U и напряжения ЭДС E. Действующие значения наиболее часто используют для характеристики интенсивности синусоидальных сигналов: электроизмерительные приборы проградуированы так, что они показывают действующие значения синусоидальных токов и напряжений. Для синусоидальных величин вычисление интеграла в последнем выражении приводит к соотношениям:

Способы представления синусоидального тока

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно: i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.

Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

Аналитический способ

Для тока: i(t) = Im sin(ωt + ψi), для напряжения: u(t) = Um sin (ωt +ψu), для ЭДС: e(t) = Em sin (ωt +ψe),

Im, Um, Em – амплитуды тока, напряжения, ЭДС;

значение в скобках – фаза (полная фаза);

ψi, ψu, ψe – начальная фаза тока, напряжения, ЭДС;

ω – циклическая частота, ω = 2πf;

f – частота, f = 1 / T; Т – период.

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени i(t) = Im sin(ωt — ψi).

Графоаналитический способ

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

i1(t) = Im1 sin(ωt)→ i2(t) = Im2 sin(ωt + ψ2) →i(t) = ?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt — ψ2) = Im sin(ωt + ψ).

Приравниваем проекции на вертикальную и горизонтальные оси

Im sin ψ = Im2 sin ψ2; Im cos ψ = Im2 cos ψ2 + Im1;

Источник