Меню

Плата для понижения напряжения

Понижающий DC-DC преобразователь на LM2596

Понижающие DC-DC преобразователи все чаще и чаще находят свое применение в быту, хозяйстве, автомобильной технике, а также в качестве регулируемых блоков питания в домашней лаборатории.

К примеру, на большегрузном автомобиле напряжение бортовой кабельной сети может составлять +24В, а вам необходимо подключить автомагнитолу или другое устройство с входным напряжение +12В, тогда такой понижающий преобразователь вам очень пригодится.

Множество людей заказывают с различных китайских сайтов понижающие DC-DC преобразователи, но их мощность довольно таки ограничена, ввиду экономии китайцами на сечении обмоточного провода, полупроводниковых приборах и сердечниках дросселей, ведь чем мощнее преобразователь, тем он дороже. Поэтому, предлагаю вам собрать понижающий DC-DC самостоятельно, который превзойдет по мощности китайские аналоги, а также будет экономически выгоднее. По моему фотоотчету и представленной схеме видно, что сборка не займет много времени.

Понижающий DC-DC преобразователь

Микросхема LM2596 есть ни что иное, как импульсный понижающий регулятор напряжения. Она выпускается как на фиксированное напряжение (3.3В, 5В, 12В) так и на регулируемое напряжение (ADJ). На базе регулируемой микросхемы и будет построен наш понижающий DC-DC преобразователь.

Рекомендую к прочтению статью «Регулируемый стабилизатор напряжения на LM2576», микросхемы LM2576 и LM2596 практически идентичны, расположение выводов и обвязка одинаковые, разница в частоте генератора и некоторых параметров.

Схема преобразователя

Схема понижающего DC-DC на LM2596

Основные параметры регулятора LM2596

Входное напряжение………. до +40В

Максимальное входное напряжение ………. +45В

Выходное напряжение………. от 1.23В до 37В ±4%

Частота генератора………. 150кГц

Выходной ток………. до 3А

Ток потребления в режиме Standby………. 80мкА

Рабочая температура от -45°С до +150°С

Тип корпуса TO-220 (5 выводов) или TO-263 (5 выводов)

КПД (при Vin= 12В, Vout= 3В Iout= 3А). 73%

Хотя КПД может и достигать 94%, он зависит от входного и выходного напряжения, а также от качества намотки и правильности подбора индуктивности дросселя.

Согласно графика, взятого из даташита, при входном напряжении +30В, выходном +20В и токе нагрузки 3А, КПД должен составить 94%.

КПД LM2596

Также у микросхемы LM2596 есть защита по току и от перегрева. Замечу, что на неоригинальных микросхемах данные функции могут работать некорректно, либо вовсе отсутствуют. Короткое замыкание на выходе преобразователя приводит к выходу из строя микросхемы (проверил на двух LM-ках), хотя тут удивляться и нечему, производитель не пишет в даташите о присутствии защиты от КЗ.

DC-DC преобразователь на LM2596

Элементы схемы

Все номиналы элементов указаны на схеме электрической принципиальной. Напряжение конденсаторов С1 и С2 выбирается в зависимости от входного и выходного напряжения (напряжение входа (выхода) + запас 25%), я установил конденсаторы с запасом, на напряжение 50В.

Конденсатор C3 — керамический. Номинал его выбирается согласно таблицы из даташита. Согласно этой таблицы емкость C3 подбирается для каждого отдельного выходного напряжения, но так как преобразователь в моем случае регулируемый, то я применил конденсатор средней емкости 1нФ.

Выбор конденсатора C3 для LM2596-ADJ

Диод VD1 должен быть диодом Шоттки, или другим сверхбыстрым диодом (FR, UF, SF и др.). Он должен быть рассчитан на ток 5А и напряжение не меньше 40В. Я установил импульсный диод FR601 (6А 50В).

Дроссель L1 должен быть рассчитан на ток 5А и иметь индуктивность 68мкГн. Для этого берем сердечник из порошкового железа (желто-белого цвета), наружный диаметр 27мм, внутренний 14мм, ширина 11мм, ваши размеры могут отличаться, но чем больше они будут, тем лучше. Далее мотаем двумя жилами (диаметр каждой жилы 1мм) 28 витков. Я мотал одиночной жилой диаметром 1,4мм, но при большой выходной мощности (40Вт) дроссель грелся сильно, в том числе и из-за недостаточного сечения жилы. Если мотать двумя жилами, то в один слой обмотку положить не удастся, поэтому нужно мотать в два слоя, без изоляции между слоями (если эмаль на проводе не повреждена).

Через резистор R1 протекает малый ток, поэтому его мощность 0,25Вт.

Резистор R2 подстроечный, но может быть заменен на постоянный, для этого его сопротивление рассчитывается на каждое выходное напряжение по формуле:

Расчет резистора R2 для ЛМ2596

Где R1 = 1кОм (по даташиту), Vref = 1,23В. Тогда, посчитаем сопротивление резистора R2 для выходного напряжения Vout = 30В.

R2 = 1кОм * (30В/1,23В — 1) = 23,39кОм (приведя к стандартному номиналу, получим сопротивление R2 = 22кОм).

Таким образом, можно рассчитать сопротивление резистора R2 для любого выходного напряжения (в рамках возможного диапазона).

Также, зная сопротивление резистора R2, можно рассчитать выходное напряжение.

Расчет выходного напряжения ЛМ2596

Испытания понижающего DC-DC преобразователя на LM2596

При испытаниях на микросхему был установлен радиатор площадью ? 90 см? .

Испытания я проводил на нагрузке сопротивлением 6,8 Ом (постоянный резистор, опущенный в воду). Изначально на вход преобразователя я подал напряжение +27В, входной ток составил 1,85А (входная мощность 49,95Вт). Выходное напряжение я выставил 15,5В, ток нагрузки составил 2,5А (выходная мощность 38,75Вт). КПД при этом составил 78%, это очень даже неплохо.

После 20 мин. работы понижающего преобразователя диод VD1 нагрелся до температуры 50°С, дроссель L1 нагрелся до температуры 70°С, сама микросхема нагрелась до 80°С. То есть, во всех элементах есть резерв по температуре, кроме дросселя, 70 градусов для него многовато.

Читайте также:  Нормальное напряжение генератора авто

Поэтому для эксплуатации данного преобразователя на выходной мощности 30-40Вт и более, необходимо мотать дроссель двумя (тремя) жилами и выбирать больший по размерам сердечник. Диод и микросхема могут долговременно держать температуру 100-120°С без каких-либо опасений (кроме нагрева всего что рядом находится, в том числе и корпуса). При желании можно установить на микросхему больший по размеру радиатор, а у диода VD1 можно оставить длинные выводы, тогда будет тепло отводиться лучше, либо прикрепить (припаять к одному из выводов) небольшую пластинку (радиатор). Также нужно как можно лучше залудить дорожки печатной платы, либо пропаять по ним медную жилу, это обеспечит меньший нагрев дорожек при долгой работе на большую выходную мощность.

Нагрузка импульсного регулятора напряжения

Испытания продолжаются…

Подав на вход преобразователя напряжение +12В, входной ток составил 1,75А (потребляемая мощность 21Вт). Выходное напряжение я выставил 5,3 Вольт, выходной ток составил 2,5А (выходная мощность 13,25Вт), КПД при этом составил уже 63%.

После 20 мин. работы преобразователя дроссель L1 нагрелся до температуры 45°С, микросхема LM2596 нагрелась до температуры 70°С, температуру диода VD1 я не стал измерять, так как он был чуть горячим.

Пару слов о печатной плате…

В даташите представлен эскиз исполнения LM2596 в корпусе TO-220 с загнутыми выводами.

ЛМ2596

Я же покупал микросхему с прямыми выводами и сам их подгибал.

LM2596 с прямыми выводами

Так вот, перегнул я их не как в даташите, а наоборот. Соответственно печатную плату развел под неправильный изгиб выводов, но эта печатная плата оказалась удобнее. Даташитовский вариант мне не нравится вовсе, так как невозможно LM-ку установить на стенку корпуса блока питания или другого устройства. Поэтому я развел плату и под стандартный изгиб выводов, с возможностью установки большого радиатора или крепления к стенке корпуса. Поэтому, для вас в архиве лежат две рабочие печатные платы. Перемычки устанавливать как можно толще (диаметром не менее 1мм).

Печатная плата понижающего DC-DC преобразователя на LM2596 СКАЧАТЬ

Источник

Как устроены DC DC преобразователи?

DC DC преобразователи нужны для работы разнообразной электронной аппаратуры, управляющих схем, устройств коммуникации, вычислительной техники, автоматики, мобильных гаджетов и других приборов. Принцип работы DC DC преобразователей заключается в изменении выходного напряжения, причем возможно как его увеличение, так и уменьшение по отношению к значению напряжения на входе – в зависимости от используемого источника питания и напряжения, потребляемого прибором. Соответственно, инверторы бывают повышающими и понижающими.

Питание схем с использованием трансформаторных БП

В трансформаторных блоках питания преобразуется напряжение питающей электросети – как правило, трансформатор уменьшает его до требуемой величины. Уменьшенное напряжение выпрямляется при помощи диодного моста, проходит через полупроводниковый стабилизатор (при необходимости) и нивелируется конденсаторным фильтром.

Стабилизаторы обычно используются линейные. Они дешевые и содержат в обвязке минимум компонентов, но имеют скромный КПД. Частично Uвх тратится на нагревание регулирующего транзистора. Поэтому трансформаторные БП не подходят для использования в переносной электронике.

Работа DC DC преобразователя

Для приборов, электропитание которых производится от батареек или аккумуляторов, изменение напряжения до требуемой величины возможно только с использованием DC DC инверторов. Опишем вкратце, как работают DC DC преобразователи повышающего или понижающего типа. Напряжение постоянного тока с его помощью:

  • становится переменным с частотой в несколько десятков или сотен кГц;
  • увеличивается или уменьшается до требуемого значения;
  • проходит выпрямление;
  • поступает в нагрузку.

Такие инверторы называют импульсными. Они отличаются высоким КПД – от 60 до 90%, и имеют широкий диапазон Uвх. Его значение бывает меньше Uвых или гораздо выше его. Например, инвертор, увеличивающий напряжение от 1,5 до 5 В, увеличивает стандартное напряжение батарейки до Uвых, характерного для USB разъема на компьютере. Широко используются и модели, увеличивающие напряжение с 12 до 220 В. Среди понижающих моделей популярны конфигурации, уменьшающие напряжение от 12–80 В до 5 В и от 16–120 В до 12 В (напряжение автомобильного аккумулятора).

Виды DC DC преобразователей напряжения

Рассмотрим основные типы таких устройств:

  1. Понижающие (альтернативные названия – buck, chopper, step-down). Обычно имеют Uвых Инвертирующие (inverting converter). Главная задача таких устройств – получение Uвых обратной полярности по отношению к источнику питания. Они оптимально подходят для использования в ситуациях, когда нужно 2-полярное питание, к примеру, для питания операционных усилителей.

Инверторы всех перечисленных типов бывают со стабилизацией и без нее. Uвых бывает гальванически связанным с Uвх. Есть модели с гальванической развязкой напряжений. Подходящие характеристики и особенности инвертора зависят от характеристик прибора, в составе которого он будет применяться.

Работа DC DC преобразователя понижающего типа

Как видно по функциональной схеме DC DC преобразователя класса buck, на входе Uin поступает на фильтр – расположенный здесь конденсатор Cin. Коммутацию тока на высоких частотах выполняет транзистор VT – обычный биполярный или структуры MOSFET, или IGBT. Дополнительно в функциональной схеме предусмотрен разрядный диод VD и расположенный на выходе фильтр LCout. С него напряжение идет в нагрузку Rн, которая подсоединена последовательно к элементам VT и L.

Читайте также:  Ток равен нулю чему равно напряжение

Опишем алгоритм понижения напряжения. Управляющая микросхема создает импульсы в форме прямоугольников, со стабильной частотой. На графике tи – это время импульса при открытом транзисторе, а tп – длительность паузы при его закрытом состоянии. Отношение tи/T=D – это коэффициент заполнения, который измеряется в процентах (от 0 до 100%) или долях числа (от 0 до 1). К примеру, D=50% – это то же самое, что и D=0,5. При D=1 наблюдается полная проводимость ключевого транзистора, а при D=0 ключ закрыт, т.е. наблюдается отсечка. При D=0,5 значение Uвых=0,5Uвх.

Uвых регулируется путем смены ширины импульса управления tи, фактически – за счет смены коэффициента D. Этот принцип регулировки носит название широтно-импульсной модуляции (ШИМ, в английской аббревиатуре – PWM). Стабилизация Uвых в большинстве импульсных БП осуществляется с использованием ШИМ.

Благодаря массовому распространению инверторов производители наладили изготовление ШИМ контроллеров всевозможных типов. Их выбор огромен, поэтому собирать инверторы на дискретных компонентах не приходится. К тому же, готовые инверторы умеренной мощности отличаются ценовой доступностью. Для установки в создаваемую конструкцию остается только припаять к плате проводки на вход и выход, а затем выставить нужное значение Uвых.

Фазы работы понижающего преобразователя

Коэффициент D влияет на длительность открытия или закрытия ключа:

  1. Фаза 1 – накачка. Когда ключ-транзистор разомкнут, ток от батарейки, аккумулятора или другого источника идет по направлению от дросселя L на нагрузку Rн и заряжаемый конденсатор Cout. Конденсатор и дроссель при этом копят электроэнергию. Величина тока iL плавно растет под воздействием индуктивности дросселя. Этот этап называется накачкой. Когда напряжение на нагрузке достигает фиксированной величины, транзистор VT перекрывается, и стартует этап разряда.
  2. Фаза 2 – разряд. Транзистор VT сомкнут, и дроссель не накапливает энергию, т.к. источник отключен. Изменению значения и направленности тока, идущего через обмотку дросселя, препятствует индуктивность L (эффект самоиндукции). В результате движение тока не прекращается в один миг, и происходит его замыкание по линии «диод-нагрузка». По этой причине диод VD называется разрядным. Обычно в этих целях используется быстродействующий диод Шоттки. По окончании 2-й фазы процесс циклически повторяется.

Предельное значение Uвых в этой схеме равно Uвх и не может превышать его. Для получения Uвых˃ Uвх используются повышающие преобразователи.

Нюансы создания схем понижающих преобразователей

В реальности работа схемы инвертора отличается от теоретического описания. При включении и выключении возможны промедления, активное сопротивление отлично от нуля, на работе схемы сказывается качество используемых элементов и паразитная емкость монтажа. Значение индуктивности определяет 2 режима работы понижающего преобразователя:

  1. При малой индуктивности он функционирует в режиме разрывных токов, что не позволяет использовать конвектор с источниками питания.
  2. При высокой индуктивности чоппер работает по принципу неразрывных токов, и есть возможность с использованием фильтров на выходе получить U=const с допустимыми пульсациями. В таком режиме функционируют и модели, увеличивающие напряжение.

С целью увеличения КПД вместо разрядного диода VD можно использовать транзистор MOSFET. Его в нужное время открывает управляющая схема. Такие инверторы называют синхронными и рекомендуются к использованию при достаточно большой мощности инвертора.

Работа повышающих DC DC преобразователей

Такие модели преимущественно используются при работе от источников малой мощности, к примеру, от пары-тройки батареек, а некоторые конструкционные элементы требуют напряжения 12–15 В при малом токопотреблении. Uin поступает на находящийся на входе фильтр Cin и далее – на катушку L и транзистор VT, которые последовательно соединены между собой. В месте соединения катушки и стока транзистора к ним подсоединен диод VD. К его второму выходу подсоединена нагрузка Rн и шунтирующий конденсатор Cout.

Работой транзистора VT управляет микросхема, вырабатывающая управляющий сигнал неизменной частоты с настраиваемым значением D – по аналогии с работой понижающего преобразователя. Диод VD в соответствующие моменты перекрывает нагрузку от ключа.

При разомкнутом ключе вывод L, находящийся справа на схеме, соединяется с минусовым полюсом аккумулятора или другого источника питания Uin. Растущий под действием индуктивности ток от аккумулятора идет через катушку (в ней копится энергия) и разомкнутый транзистор. Одновременно диод VD перекрывает нагрузку и находящийся на выходе конденсатор, не допуская его разряда из-за открытости транзистора.

В то же время нагрузка получает питание из запасов конденсатора Cout, и напряжение на выходном конденсаторе снижается. Когда оно становится меньше заданной величины (согласно настройкам управляющей схемы), ключ-транзистор VT перекрывается, и накопленная в дросселе электроэнергия через диод VD заряжает конденсатор Cout, подпитывающий нагрузку. Электродвижущая сила самоиндукции катушки L суммируется с Uвх и идет в нагрузку, поэтому наблюдается прирост напряжения Uвых˃Uвх. Когда величина Uвых достигает заданного уровня стабилизации, управляющая схема инициирует открытие транзистора VT, и процесс циклически продолжается.

Читайте также:  Что такое квадратура напряжения

Как работает универсальный DC DC преобразователь

Принцип его работы имеет значительное сходство со схемой DC DC инвертора повышающего типа, но дополнительно используются конденсатор C1 и катушка L2. Благодаря им устройство используется в режиме уменьшения напряжения. Такие конверторы используются в ситуациях, когда Uвх имеет большой диапазон значений. Например, есть модели, преобразовывающие Uвх= 4–35 В в Uвых=1,23–32 В. Внешне универсальный преобразователь легко узнать по наличию 2-х катушек – L1 и L2.

Источник



Топ 10 электронных модулей (DC-преобразователи, BMS-платы, контроллеры заряда и многое другое)

10 электронных модулей (DC-преобразователи, BMS-платы, контроллеры заряда и многое другое). В топике представлены самые востребованные платы и модуля для питания DIY-проектов и устройств, которые отличаются качеством и невысокой стоимостью.

Платы TP4056 для заряда Li-Ion аккумуляторов:

Ссылка на товар — ЗДЕСЬ

Народные платки заряда литиевых (Li-Ion и Li-Pol) аккумуляторов. Имеют настраиваемый ток заряда до 1А, корректный алгоритм CC/CV (ограничение тока и отсечка), небольшие размеры 22мм*17мм и два индикатора зарядки. Пригодятся для заряда аккумуляторов в различных DIY-проектах, автономных устройствах и прочих девайсах. При необходимости можно убрать обвязку, что еще уменьшит габариты.

Есть вариант этой платы с защитой от переразряда и рабочего тока ЗДЕСЬ

Основное достоинство — защита от переразряда, что идеально подойдет для приборов и РУ-моделей.

Платы TP5000/5100 для заряда Li-Ion аккумуляторов:

Ссылка на товар — ЗДЕСЬ

Обновленные платы для зарядки литиевых аккумуляторов. Имеют настраиваемый ток заряда до 2А, корректный алгоритм CC/CV (ограничение тока и отсечка), небольшие размеры и индикаторы степени заряда. Являются продолжение линейки плат TP, которые зарекомендовали себя сугубо с положительной стороны. На выбор три различных варианта под любые нужды.

Понижающий DC-DC модуль XL4015:

Ссылка на товар — ЗДЕСЬ

Также являются «народными» понижающими платами. Заявлен рабочий ток до 5А, но использовать лучше с радиатором. До 3А выдерживают спокойно. На выходе всегда чуть меньше, чем на входе. Применение самое разнообразное: питание самоделок, различных устройств, постройка простенького блока питания, зарядка батареи шуруповерта и многое другое. Присутствует режим ограничения тока (СС).

Мощный понижающий DC-DC модуль XL4015:

Ссылка на товар — ЗДЕСЬ

Мощный аналог с максимальной мощностью в 300 ватт. Заявлен выходной ток до 8А, но использовать лучше с активным охлаждением, например, простеньким вентилятором. Используется для питания мощных самоделок, различных устройств, для постройки блока питания с режим ограничения тока (СС). Многие используют для питания ноутбуков и прочей техники.

Понижающий регулируемый DC-DC преобразователь:

Ссылка на товар — ЗДЕСЬ

Еще одни «народные» платки. Благодаря хорошей схемотехнике, греются несильно, имеют высокий КПД. Многие покупают их для питания гаджетов в автомобиле (12V->5V), например, регистраторы, навигаторы, модуляторы и прочие. Удобны тем, что благодаря маленьким размерам можно встроить куда угодно, а также подстроить напряжение для компенсации потерь в кабеле.

Понижающие DC-DC преобразователи с USB выходом:

Ссылка на товар — ЗДЕСЬ

Очень удобные платки для различных DIY-проектов. Могут использоваться для питания гаджетов в автомобиле. Входное напряжение варьируется от 6 до 24 вольт, на выходе 5 вольт с максимальным током не более 3А. Платки хорошо себя зарекомендовали. Можно собрать свою зарядку и не бояться выхода ее из строя, в отличие от китайских зарядок. на нее также есть обзоры.

Повышающий DC-DC преобразователь MT3608:

Ссылка на товар — ЗДЕСЬ

Также не менее популярный преобразователь, только в отличие от предыдущих, уже повышает напряжение. К примеру, имеется источник с выходом 5V (внешний аккумулятор или зарядка), а необходимо получить 12V. Этот модуль поможет решить эту задачу легко и просто. Применение самое разнообразное, одни из немногих удачных платок. На них есть куча обзоров, кому интересно.

Мощный повышающий DC-DC преобразователь 150W:

Ссылка на товар — ЗДЕСЬ

Более мощный аналог предыдущего, который может повышать напряжение до 35 вольт. Рабочие токи составляют до 6 ампер на выходе. Из-за особенностей схемотехники повышающих преобразователей, подъем напряжения осуществляется за счет тока, поэтому на входе ток всегда больше. Здесь он ограничен 10А, но желательно уже активное охлаждение. В общем, плата хорошая.

Плата XH-M229 для запуска блока питания:

Ссылка на товар — ЗДЕСЬ

Если у вас завалялся старенький блок питания, не спешите выбрасывать его. С помощью этой платки можно легко превратить его в полезное устройства для питания различных приборов. Если требуется отличное от 5V и 12V напряжение, используйте платы выше. Грубо говоря, за копейки можно собрать простой регулируемый БП. Подойдет также и для проверки и тестирования блоков питания.

На этом заканчиваю. Если тема будет интересной, сделаю вторую часть, где присутствуют новые и более интересные модули. Кое-какие уже получил, будет время проверю в работе.

Источник