Меню

Питающее напряжение для светильника уличного

Все, что нужно знать о выборе уличных светильников

Содержание

  • Выбор осветительных приборов с учетом типа и назначения освещения
  • Какие параметры надо учитывать при выборе уличных светильников
  • Материалы и фактуры
  • Выбор конструкции уличного светильника
  • Технические характеристики уличных светильников
  • Мощность и световой поток
  • Какие лампочки используются в уличных светильниках
  • Какую температуру света лучше выбрать для улицы
  • Самые популярные производители уличных светильников
  • Самые частые ошибки при выборе уличного освещения
  • Советы по выбору освещения для улицы
  • Выводы

Зная, как выбрать уличные светильники и правильно разместить их на придомовой территории, можно подчеркнуть красоту окружающего ландшафта и сделать свой сад предметом зависти для соседей и гостей. Система уличного освещения будет очень выигрышно смотреться в сочетании с клумбами, водоемами, малыми архитектурными сооружениями. Современный рынок осветительных приборов предлагает огромный выбор разнообразных фонарей и светильников, но покупать первый понравившийся прибор не стоит. В этом деле нужен грамотный подход и знание всех нюансов.

Выбор осветительных приборов с учетом типа и назначения освещения

Для начала необходимо определить, какие функции возлагаются на светильники: сугубо технические, декоративные или нужен универсальный вариант. Все виды осветительных приборов имеют свои особенности:

  • Техническое освещение используется для того, чтобы сделать безопасным движение по территории в темное время суток. Светильники имеют неброский дизайн и не привлекают внимание в дневное время. При покупке основное внимание уделяется яркости и полноте освещения.
  • Декоративное освещение характеризуется большим количеством светильников, создающих оригинальные световые эффекты. Приборы могут иметь неприметный внешний вид или быть украшенными яркими декоративными элементами.
  • В частных владениях нередко встречается совмещенное техническое и декоративное освещение. Оно решает сразу несколько задач: украшает участок и повышает видимость в ночное время суток.

Кроме того, уличные осветительные приборы подразделяются на такие группы:

  • Фонари. Являются основным источником света для улиц, парков, автомобильных дорог. Для приусадебного участка подойдут фонари со светодиодной матрицей, обеспечивающей равномерное распределение света.
  • Декоративные светодиодные устройства (дюралайт, дюрафлекс, линейка, сетка). Используются для контурной подсветки, украшения деревьев, фонтанов и пр. В саду чаще всего устанавливают светодиоды со световым потоком белого цвета.
  • Прожекторы. Используются для освещения больших площадок и подсветки зданий, придавая им совершенно новый ночной облик. Прожекторы крепятся к любому основанию с помощью регулировочного кронштейна.

Существует еще одна классификация:

  • Светильники для освещения улицы. Обладают неприметным дизайном, монтируются с помощью опор и кронштейнов. К ним предъявляется ряд требований: высокая защита от механических ударов и неблагоприятных погодных условий, освещение максимально доступной территории.
  • Светильники для освещения ландшафта. Используются в декоративных целях, обладают эстетически привлекательным внешним видом, устанавливаются возле беседок, садовых дорожек, бассейнов, газонов.
  • Архитектурные светильники. Их основная задача заключается в подсветке здания или какого-либо элемента на его фасаде.

Какие параметры надо учитывать при выборе уличных светильников

  • Функциональное назначение. Надо заранее определиться, для каких целей будут использоваться осветительные приборы. Для освещения дома потребуется яркий направленный свет, а для подсветки дорожек подойдет мягкое рассеянное освещение. Клумбы и альпийские горки можно подсветить грунтовыми светильниками, а если их установить на разной высоте можно визуально выделить рельеф участка.
  • Технические характеристики. В первую очередь нужно обращать внимание на безопасность и устойчивость к воздействию внешней среды.
  • Эстетические характеристики. Можно опираться на свой вкус, но при этом необходимо позаботиться о том, чтобы фонарь удачно сочетался с общим стилем дома и фасада.
  • Экономичность. Самый экономичный вариант – светодиодные светильники и устройства на солнечных батареях.
  • Вид опорной конструкции. Лучше отдать предпочтение металлическим моделям.
  • Срок службы. Лидерами являются светодиодные лампы, срок их службы составляет от 50 до 100 тыс. часов.
  • Площадь освещения.

Важно знать. Светильники необходимо располагать по территории с учетом определенных норм, разработанных на законодательном уровне. К примеру, нельзя устанавливать прожекторы на непредназначенных для этого опорах и стенах зданий.

Материалы и фактуры

Фактура осветительных приборов:

  • Гладкая. Характеризуется ровной, иногда блестящей поверхностью. Примером такой фактуры может стать накладной светильник Feron Saffit или светильник на штанге Lightstar Paro.
  • Глянцевая. Пример – накладной светильник Elektrostandard Vortex.
  • Ровная. Изделия имеют одинаковую и однообразную поверхность по всей площади. Пример – накладной светильник Globo Agam.
  • Шероховатая. Приборы имеют матовую мелкозернистую поверхность. Пример – накладной светильник SLV Big Quad .
  • Узорно-рельефная. На поверхности присутствуют рельефные узоры в виде геометрических фигур, диагоналей, растительного орнамента и пр. Пример – нестенный низкий светильник SLV Pema.

Важно знать. На придомовой территории не стоит размещать слишком много светильников, иначе она приобретет аляповатый вид и будет напоминать рождественскую елку.

Выбор конструкции уличного светильника

  • Уличные фонари и торшерные светильники. Состоят из опорной мачты, на которой установлен один или несколько плафонов. Имеют разную высоту, подходят для освещения и декорирования приусадебных участков. Стоит обратить внимание на модель MW-Light Фабур.
  • Настенные осветительные приборы. К ним относятся прожекторы, светильники для архитектурной подсветки, элегантные уличные бра. Устройства обеспечивают хорошую видимость и могут выступать в качестве элемента декора. Яркий пример – настенно-потолочный прожектор Deko-Light Tec.
  • Подвесные осветительные приборы. Для украшения ландшафта подойдут подвесы, имеющие вид старинного фонаря со свечой внутри, или подвесные фонари в современном дизайне. Очень изысканно будет смотреться модель Novotech Ivory Led.
  • Грунтовые светильники. Предназначены для ландшафтной и декоративной подсветки, встраиваются непосредственно в грунт. В вечернее и ночное время их свет преображает приусадебную территорию. В качестве примера можно привести светильник Arte Lamp Prague .
  • Встраиваемые осветительные приборы. Используются для расстановки световых акцентов и подсветки определенных участков (лестниц, тропинок, контуров водоемов и пр.). Создать невероятный эффект можно с помощью встраиваемого в дорогу светильника Elektrostandard Gala GL LED .

Технические характеристики уличных светильников

Диапазон рабочих температур

Тип цоколя лампы

Мощность и световой поток

Мощность – это количество электроэнергии, которое потребляет лампа. Единица измерения – Ватт. При определении мощности уличного осветительного прибора необходимо исходить из его назначения. Возле дома или на приусадебном участке можно установить светильники с невысокой мощностью. А возле дороги лучше установить мощные фонари с ярким светом.

При покупке светильников дизайнеры рекомендуют ориентироваться на то, что одному квадратному метру площади территории должно соответствовать 20 Ватт мощности осветительного прибора. Это средняя норма, и при необходимости ее можно изменять в большую или меньшую сторону. Для освещения сада будет достаточно фонарей с мощностью ламп от 40 до 125 Ватт. Если речь идет об освещении парковой зоны или тротуара – потребуются более мощные приборы (70-250 Ватт).

Световой поток – это величина, измеряемая количеством энергии, которую источник света излучает за единицу времени. Единица измерения – Люмен (Лм). Чем выше значение этого показателя, тем более ярким будет освещение. Большинство производителей указывает значение данного параметра на упаковке осветительного прибора. Зная значение светового потока можно выполнить расчет освещенности любого помещения в зависимости от физиологических особенностей человека воспринимать палитру цветов.

Какие лампочки используются в уличных светильниках

  • Газоразрядные лампы. Довольно часто применяются в уличном освещении. Существуют разные виды ламп: ртутные, неоновые, ксеноновые, каждый из них имеет определенные преимущества и недостатки. К примеру, неоновые лампы радуют разнообразием ярких цветов, но в их составе содержатся вредные вещества.
  • Люминесцентные лампы. Они экономны и долговечны, но боятся низких температур.
  • Светодиодные лампы. Рассчитаны на длительный срок эксплуатации (до 25 лет), экономно расходую электроэнергию. Для них не характерно мерцание от перепада напряжения в сети.
Читайте также:  Чем измеряется напряжение акб

Какую температуру света лучше выбрать для улицы

Виды цветовой температуры:

  • 2700-3000 К – теплый свет;
  • 3500-4100 К – нейтральное освещение, приближенное к дневному;
  • 5000-6500 К – холодный свет (напоминает освещение в пасмурный день).

Для площадки перед домом, парка или сквера подойдут осветительные приборы, у которых световая температура находится в пределах 2700-4100 К. Светильники с холодным светом подойдут для стадионов, ангаров, автозаправок. Также их часто используют в архитектурном освещении.

Самые популярные производители уличных светильников

  • Eglo (Австрия) – производитель качественных и надежных осветительных приборов для улицы.
  • Nowodvorski (Польша) – компания выпускает уличные светильники в различных вариантах дизайнерского оформления.
  • Globo (Австрия) – производитель специализируется на декоративной садовой светотехнике.
  • Gauss (Россия) – компания выпускает качественные светодиодные светильники и прожекторы.
  • Arte Lamp (Италия) – производитель предлагает широкий спектр светотехнической продукции с интересным дизайном.

Важно знать. Для обустройства уличного освещения некоторые эксперты рекомендуют использовать светильники немецкого производства. Немцы известны ответственным подходом к делу, поэтому осветительные приборы характеризуются высоким уровнем надежности и безопасности.

Самые частые ошибки при выборе уличного освещения

  • При установке осветительных приборов и прокладке проводки не были учтены природные условия.
  • На участке было размещено больше фонарей, чем нужно.
  • Дизайн светильников не сочетается с общим ландшафтом территории.
  • Не был учтен тот факт, что на соседнем участке также установлены светильники. Из-за этого освещение получилось очень ярким.
  • Владельцы дома выбрали мощный фонарь, который освещает и территорию соседей, доставляя им неудобство.

Советы по выбору освещения для улицы

  • От ламп накаливания лучше отказаться, так как они имеют небольшой срок службы и потребляют большое количество электроэнергии.
  • Чтобы создать эффектное освещение ландшафта стоит использовать светильники с газоразрядными лампами.
  • Для подсветки парковых зон подойдут галогенные лампы.
  • Светодиодные фонари экономно расходуют электричество, обеспечивая при этом мощный световой поток.

Выводы

Разобравшись в том, какие светильники для уличного освещения лучше выбрать в той или иной ситуации, можно преобразить придомовую территорию. Перед покупкой надо корректно сформировать эксплуатационные требования к освещению и внимательно изучить техническую документацию, прилагаемую к светильнику. Если возникнут сложности с выбором осветительного прибора для улицы, можно обратится за помощью к консультантам магазина.

Если вам понравилась статья, вы можете купить уличные светильники для себя в нашем интернет-магазине Свет Депо.

Источник

Блок питания для светодиодного светильника

Независимо от того, проектируете ли вы свой собственный светодиодный светильник, модернизируете существующие светильники или приобретаете новые светодиодные светильники, вам нужно будет найти правильный Блок питания для светодиодного светильника. Вам понадобится Блок питания светодиодный драйвер или источник постоянного напряжения (или их комбинация), чтобы ваши светодиоды работали правильно. При выборе Блока питания для светодиодного светильника необходимо учитывать множество факторов. Мы обсудим все факторы и поможет вам выбрать правильный источник питания для ваших светодиодов!

Как выбрать блок питания для светодиодного светильника?

ПЕРВОЕ … Убедитесь, что у вас есть контроль тока на светодиодах

Для большинства светодиодов требуется ограничивающее ток устройство (будь то драйвер или резисторы), чтобы предотвратить превышение тока светодиодов. Этот резистор постоянного тока или резистор с ограничением тока используется для регулирования тока на светодиодах, что позволяет им работать в безопасности и максимизировать их срок службы. Электрические характеристики светодиодов меняются по мере их нагрева(читайте нашу статью про температуру светодиодов); если ток не регулируется, светодиоды будут потреблять слишком много тока с течением времени. Это превышение тока приведет к изменению яркости светодиода, что приведет к высокой внутренней теплоте, что в конечном итоге приведет к сбою светодиода. Если вы строите свой собственный светодиодный светильник или работаете с любым из наших светодиодов компонентов, вам понадобится постоянное устройство в вашей системе. Большинство готовых светодиодных продуктов или светодиодных полосок (которые вы покупаете прямо из магазина) уже имеют драйверы или резисторы, встроенные для регулирования тока. Если вы не уверены, нужен ли вам источник постоянного тока, посмотрите на это полезный пост, чтобы узнать.

Источники постоянного напряжения

Источник питания постоянного напряжения может использоваться для питания светодиодных ламп, которые имеют резисторы или драйверы постоянного тока уже в системе. Эти типы продуктов обычно требуют питание от постоянного напряжения. Вам понадобится Блок питания для светодиодного светильника для преобразования сети переменного напряжения в безопасное постоянное напряжение для ваших источников света. Например, светодиодные ленты (Читайте нашу статью как подключить светодиодную ленту) имеют встроенные ограничители тока (как вы можете видеть встроенный в основании светодиодной ленты). Если вы хотите установить это в своем автомобиле, вам не понадобится блок питания. Батареи автомобилей выделяют 12 В постоянного тока. Питание 12 В от аккумулятора будет полностью адекватным для ваших источников света. Но для того, чтобы включить эти светодиодные ленты в домах, необходим преобразователь переменного тока в постоянный ток, который будет потреблять стандартное бытовое напряжение 220 В переменного тока и преобразовывать его в 12 В / 24 В постоянного тока.

Какими характеристиками должен обладать блок питания для светодиодного светильника?

Таким образом, вам нужен Блок питания для светодиодного светильника на постоянное напряжение, который может преобразовывать ваше бытовое напряжение переменного тока в безопасное постоянное напряжение. Есть много вещей, которые влияют на поиск правильного источника питания для ваших нужд. Во-первых, мы должны заблокировать требуемую мощность от источника питания.

Мощность.

Чтобы начать, узнайте, сколько ватт потребляет ваш светильник. Если вы надеетесь запустить более одного светильнка от одного источника питания, вы должны суммировать мощность, чтобы найти общее количество потребляемых ватт. Удостоверьтесь, что у вас достаточно большой источник питания, давая себе 20% -ный запас над общей мощностью, которую вы рассчитываете на своих светодиодах. Это можно легко сделать, умножив общую мощность на 1,2, а затем найдя источник питания, рассчитанный на эту мощность.

Скажем, например, у нас есть 4 линии светодиодных полосок, которые работают примерно на 12 ватт каждый. Простое их умножение покажет, что наша мощность системы должна быть около 48 Вт. Теперь мы можем добавить 20% рекомендуемую подушку с 48 х 1,2 = 57,6 Вт. Для этого проекта достаточно 60-ваттного (или более высокого) источника питания.

Напряжение / Ток.

При создании светодиодного светильника или замене неисправного Блока питания для светодиодного светильника важно сначала убедиться, что выходное напряжение совместимо со светодиодом. Светодиодные продукты со встроенными регуляторами тока обычно будут довольно хорошими в определении того, какое входное напряжение должно использоваться. Например, источник питания 12 В будет использоваться с нашими светодиодными лентами, поскольку это то, что им требуется.

Другим распространенным приложением является использование светодиодов высокой мощности с постоянными токовыми драйверами, для которых требуется входное напряжение постоянного тока. Скажем, у нас есть шесть светодиодов Cree, которые выходят из драйвера. Каждый светодиод работает примерно на 3,1 вольта. С четырьмя из них наше общее напряжение в этой серии будет составлять 18,6 В постоянного тока. Как правило, драйверы низкого напряжения, работают лучше, если у вас есть небольшой запас над требуемым напряжением. Для этой настройки я бы использовал источник питания, выводящий по крайней мере 24 В постоянного тока. Обратите внимание, что вы всегда должны убедиться, что используемый Блок питания для светодиодного светильника низкого напряжения рассчитан на правильное напряжение, которое вы хотите ввести.

Читайте также:  Пин индикатор напряжения все инструменты

Кроме того, убедитесь, что выбранный источник питания может обрабатывать входную мощность, которая у вас есть. Линейное напряжение будет меняться в зависимости от того, где вы находитесь в мире. Убедитесь, что вы знаете, есть ли мощность переменного тока (90-120 В переменного тока) или сетевое питание переменного тока (200-240 В переменного тока). Многие источники питания, такие как продукты Mean Well, будут рассчитаны на весь диапазон, но всегда полезно знать ваш вход переменного тока и следить за тем, чтобы источник питания, который вы используете, подходит для этого.

Регулируемый блок питания для светодиодного светильника

Если вы хотите регулировать яркость, и вы хотите настроить их яркость, убедитесь, что вы выбрали источник питания, который имеет возможности диммирования. В спецификациях источника питания следует указать, является ли Блок питания для светодиодного светильника диммируемым или нет, и какой тип управления диммером он использует. Я кратко рассмотрю два типа управления:

PWM Dimming: также известный как широтно-импульсной модуляции, может использоваться на всех источниках питания. Даже Блок питания для светодиодного светильника не являющийся диммируемым по спецификации, может быть регулируемым через настенные или дистанционные диммеры PWM. Это связано с тем, что диммеры PWM идут в линию с полосками, затемняя на стороне 12 В постоянного тока цепи. Диммеры PWM фактически подают импульсы на высоких частотах, чтобы изменить восприятие света невооруженным глазом. Чем выше частота, тем ярче они будут.

TRIAC Dimming: этот тип затемнения позволяет освещать светодиоды стандартными диммерами. Вы должны убедиться, что источник питания подходит для регулировки яркости переменного тока (TRIAC), проверяя спецификации. Эти источники питания работают путем изменения мощности на стороне переменного тока схемы через диммер TRIAC. Изменение мощности, создаваемой диммером на стороне входа переменного тока, будет варьировать напряжение на выходе постоянного тока и регулировать яркость светодиодов. Диммеры TRIAC можно найти в обычных магазинах. Наиболее популярными / узнаваемыми брендами будут Lutron и Leviton.

Температура и погода

Важным фактором, который нельзя игнорировать при выборе Блока питания для светодиодного светильника, является область и окружающая среда, в которых он будет использоваться. Источники питания работают наиболее эффективно, если они используются в их температурных параметрах. Спецификации Блока питания для светодиодного светильника должны включать безопасный диапазон рабочих температур. Лучше всего работать в этом и не задерживать Блок питания для светодиодного светильника где-нибудь там, где тепло может накапливаться и превышать эту максимальную рабочую температуру. Как правило, это плохая идея вставить блок питания в крошечный корпус без системы вентиляции. Это позволит даже минимальное количество тепла, создаваемого источником, со временем нарастать и в конечном итоге готовить источник питания. Поэтому убедитесь, что область не слишком теплая или холодная, и что тепло не может нарастать до уровня повреждения.

Каждый светодиодный источник питания также имеет рейтинг защиты от проникновения (IP). IP-рейтинги состоят из двухзначного кода, который указывает размер твердых веществ и давление жидкостей, которые могут сопротивляться источнику питания. Первое число относится к размеру твердых веществ, которые может выдерживать устройство, тогда как второе число относится к количеству жидкости, которое может выдерживать устройство.

Эффективность Блока питания для светодиодного светильника говорит о том, какая мощность действительно направлена ​​на то, чтобы светодиод загорелся. Чем выше процентная доля энергопотребления, тем больше энергии вы в итоге сохраняете. Для светодиодных светильников рекомендуется выбрать источник питания с КПД 80% или выше. Ознакомьтесь с источниками питания Mean Well для наиболее эффективного выбора, так как они имеют рейтинги эффективности, хорошо работающие на 90 процентов.

Размер

При выборе Блока питания для светодиодного светильника для вашего светодиодного проекта важно знать, где он должен быть установлен или установлен. Если вы хотите поместить Блок питания для светодиодного светильника внутрь продукта, который вы делаете, он должен быть достаточно мал, чтобы вписаться в предоставленное пространство. Если он находится вне светильника, у него должен быть способ установить соединение. Существуют различные источники питания, предлагаемые в разных размерах и формах в соответствии с вашими потребностями.

Класс 1 или Класс 2?

Легко путать эти два рейтинга, поэтому давайте убедимся, что у нас есть все это сейчас, когда мы приближаемся к пониманию источников питания светодиодов. Источник питания класса 2 соответствует ограниченным уровням мощности, определенным Национальным электрическим кодексом (NEC), и соответствует требованиям стандарта UL 1310. Источники питания класса 2 ограничены 60 В постоянного тока и 100 Вт. Поскольку их мощность ограничена, источники питания класса 2 не могут подавать столько светодиодов, сколько другие за пределами рейтинга. Здесь вы должны определить, хотите ли вы использовать большую мощность от одного источника питания или придерживаться безопасности источника питания класса 2, который защищен от пожара и поражения электрическим током.

Оценка класса защиты от поражения электрическим током II на самом деле просто означает, что входные и выходные провода имеют двойную изоляцию. Блок питания для светодиодного светильника класса II популярнее, так как они не требуют подключения к заземлению.

Найдите лучший Блок питания для светодиодного светильника

Надеюсь, этот пост помог вам найти правильный Блок питания для светодиодного светильника. Существует множество вариантов выбора, поэтому найдите время и выберите тот, который лучше всего подходит для вашей ситуации, и имеет требование безопасности и был рассчитан на длительное время. Если вы ищете место для начала, я бы очень рекомендовал Mean Well Power Supplies , это авторитетный бренд с большим количеством светодиодных Блоков питания для светодиодных светильников и расходных материалов с фантастическими гарантиями.

Источник



Разработка источников питания для уличного светодиодного освещения

17 сентября 2009

В данном материале описан один из возможных подходов к вопросу питания светодиодных источников света общего назначения. Источник такого типа часто называют светодиодной лампой или светодиодным светильником.

К такому источнику предъявляется ряд требований. Чаще других применяют следующие: непосредственное питание светодиодов, минимальная себестоимость источника, совместимость с питающими сетями, защита от аварийных режимов работы. Данный список может быть расширен, однако, перечисленные требования применимы в большинстве случаев. Рассмотрим эти требования подробнее.

Непосредственное питание светодиодов. Для источника питания полезной нагрузкой является массив светодиодов. Как известно, светодиоды обладают относительно низким дифференциальным сопротивлением, или, как иногда говорят, жесткой вольтамперной характеристикой. Питать их рекомендуется от источника постоянного тока. Ток должен быть стабилен, и источник должен иметь соответствующую максимальную мощность или максимальное выходное напряжение. Такой источник может питать светодиоды при непосредственном подключении без применения какого-либо пассивного, активного или реактивного балласта.

Минимальная себестоимость источника. Это требование очевидно. Отметим, что одной из слабых сторон современных светодиодных светильников является их относительно высокая себестоимость, поэтому, производители стремятся снизить ее всеми доступными средствами, в том числе, снижая стоимость источника питания.

Читайте также:  Трансформаторы напряжения применяются только

Совместимость с питающими сетями. Как известно, имеющиеся электрические сети наиболее эффективны при использовании с резистивной нагрузкой. Например, электронагревательные приборы, лампы накаливания. Другие типы нагрузки, такие как электронное оборудование, газоразрядные лампы, требуют применения специальных источников питания. Одной из основных характеристик источника, наравне с максимальной выходной мощностью и КПД, является коэффициент мощности. Фактически этот коэффициент показывает степень подобия потребителя обычному резистору с точки зрения поставщика электроэнергии. Коэффициент мощности, равный единице, означает, что поставщик энергии не отличит данного потребителя от обычной резистивной нагрузки, например, лампы накаливания.

Защита от аварийных режимов. Такое требование применимо практически к любым источникам питания. Однако в нашем случае оно имеет определенную специфику. Обычно предполагается, что источник питания может работать на холостом ходу и на нагрузку до максимального допустимого тока включительно. Источник надо защищать теми или иными средствами от работы на низкоомную нагрузку и от работы на короткое замыкание. Особенность источника с токовым выходом состоит в том, что он может работать относительно безболезненно на короткое замыкание и на нагрузку с импедансом до максимально допустимого значения. От работы на высокоомную нагрузку и от обрыва нагрузки такой источник также надо защищать. Действительно, источник тока с обрывом в цепи нагрузки должен выработать бесконечно большую мощность, чтобы поддерживать заданный ток при неограниченно высоком напряжении на выходе. Что, очевидно, невозможно и приведет к той или иной аварии в системе питания, если только не применены специальные средства защиты, ограничивающие выходное напряжение источника и, следовательно, его мощность в аварийном режиме.

Топология источника питания

Как обычно, при построении источника питания одной из первых решается задача выбора архитектуры устройства. Поскольку перед разработчиком стоит сразу несколько задач, логично выбрать архитектуру с несколькими этапами преобразования энергии и распределить решаемые задачи по отдельным каскадам. Один из наиболее распространенных подходов предполагает использование двух силовых контуров (рис. 1).

Структура двухкаскадного преобразователя

Рис. 1. Структура двухкаскадного преобразователя

Первый силовой контур обеспечивает повышение напряжения выше мгновенного входного напряжения, при этом на него возложена функция корректора коэффициента мощности (ККМ). ККМ охвачен отрицательной обратной связью (ООС) по напряжению. Дополнительно реализована защита от перенапряжения, которая отключает повышающий преобразователь, если напряжение на его выходе достигло максимального разрешенного уровня. Напряжение после ККМ фильтруется на главном и практически единственном накопительном конденсаторе большой емкости. Далее высокое постоянное напряжение подается на понижающий преобразователь. Особенность этого преобразователя — его обратная связь. Благодаря ООС по току, а не по напряжению, как в большинстве преобразователей, он стабилизирует на своем выходе именно ток, которым питаются светодиоды.

Такая архитектура двухкаскадного источника питания с корректором коэффициента мощности и токовым выходом хорошо известна, часто и успешно применяется. При ряде положительных свойств она обладает относительной сложностью, так как содержит два силовых каскада. Второй ее недостаток — относительно низкий КПД, так при типичном КПД каждого каскада 90% результирующий КПД устройства составит только 81%, что не всегда приемлемо.

Альтернативную архитектуру однокаскадного корректора коэффициента мощности с токовым выходом рассмотрим на практическом примере.

Пример построения источника питания
для светодиодных светильников общего назначения

Рассмотрим источник питания для уличного светодиодного светильника на примере проекта PMP3976. Принципиальная схема источника приведена на рисунке 2.

Электрическая схема источника питания для уличного светодиодного светильника

Рис. 2. Электрическая схема источника питания для уличного светодиодного светильника

Как следует из названия, этот источник питания предназначен для применения в составе уличного светильника. Его максимальная выходная мощность около 80 Вт. Он вырабатывает стабильный выходной ток 350 мА и питается от сети переменного тока с номинальным напряжением 220 В. Как видно из схемы, это импульсный преобразователь напряжения, он построен по топологии SEPIC и, следовательно, не имеет гальванической изоляции между входом и выходом. Это вполне допустимо для уличных светильников, но требует исключительной осторожности при лабораторных испытаниях. Несмотря на очевидную простоту схемы, данный источник содержит корректор коэффициента мощности. Его работа видна на рисунке 3, где представлены следующие эпюры: входное синусоидальное напряжение питания источника и почти синусоидальный потребляемый ток.

Входное напряжение и потребляемый ток

Рис. 3. Входное напряжение и потребляемый ток

Как видно из рисунка, форма тока несколько отличается от идеальной синусоиды, поэтому коэффициент мощности меньше единицы, что, впрочем, характерно для любого реального корректора коэффициента мощности. В таблице 1 приведены результаты лабораторных испытаний, которые проводились в диапазоне входных напряжений и при фиксированной нагрузке.

Таблица 1. Результаты лабораторных исследований

Ток нагрузки, А Выходное напряжение, В Входное напряжение, В Коэффициент мощности, КПД, %
0,349 245,5 150,4 0,983 89,7
0,349 245,5 202,6 0,979 91,3
0,350 245,5 248,4 0,969 89,4
0,350 245,5 265,7 0,962 88,9

Из этих измерений следует, что коэффициент мощности всегда выше 90% и, следовательно, удовлетворяет самым строгим европейским требованиям. При этом КПД преобразователя в целом невелик и колеблется около 90%. Это обусловлено применением относительно малогабаритного импульсного трансформатора, который работает в тяжелом температурном режиме и рассеивает значительную мощность. Это видно на приведенной ниже термофотографии действующей платы макета преобразователя (рис. 4).

Термофотография действующего макета источника питания

Рис. 4. Термофотография действующего макета источника питания

Если позволяют требования к размеру преобразователя, то для облегчения температурного режима источника и повышения его КПД можно применить импульсный трансформатор большего габарита.

Внешний вид источника приведен на рисунке 5.

Внешний вид источника питания

Рис. 5. Внешний вид источника питания

Как уже упоминалось ранее, этот источник построен с применением корректора коэффициента мощности. Поэтому после выпрямительного моста не установлен электролитический конденсатор большой емкости. Фильтрация помех с удвоенной частотой сети происходит во вторичной цепи благодаря конденсатору преобразователя с относительно большой емкостью, подключенному непосредственно к выходу. Этот конденсатор хорошо виден на фотографии макета преобразователя. Габариты и емкость этого элемента достаточно велики, что снижает удельную нагрузку на него. Как видно на термофотографии, он практически не рассеивает активной мощности, что продлевает его срок службы.

Такой способ фильтрации не является идеальным и на выходе устройства присутствуют пульсации тока с удвоенной частотой сети, что видно на рисунке 6.

Пульсации выходного тока

Рис. 6. Пульсации выходного тока

Величина этих пульсаций составляет около ±8% от постоянной составляющей выходного тока, что следует признать приемлемым значением для большинства применений.

Дополнительно отметим, что данный источник оборудован схемой защиты, построенной на транзисторах Q1 и Q2. Эта схема распознает повышенное напряжение на выходе преобразователя, которое может возникнуть, например, при обрыве или отключении нагрузки. Далее происходит принудительное выключение преобразователя и его последующий перезапуск. Поскольку перезапуск преобразователя происходит достаточно медленно и занимает несколько секунд, у выходного конденсатора есть время, чтобы частично разрядиться через резистивную нагрузку холостого хода.

Заключение

В этой статье показан лишь один пример построения источника питания — для уличного светодиодного светильника, хотя область применения контроллера UCC28810 значительно шире. В частности, его также можно использовать при построении источников питания светодиодных ламп для освещения жилых и коммерческих помещений, архитектурной подсветки и инфраструктурного освещения.

Использование оценочных модулей UCC28810EVM-002 и UCC28810EVM-001, реализующих неизолированный сетевой источник питания с ККМ на 100 Вт и изолированный сетевой источник тока с ККМ и функцией димминга на 25 Вт, соответственно, поможет значительно сократить сроки разработки подобных устройств.

Источник