Меню

Переменный резистор менять напряжение

Резисторы, ток и напряжение

В этой статье мы рассмотрим резистор и его взаимодействие с напряжением и током, проходящим через него. Вы узнаете, как рассчитать резистор с помощью специальных формул. В статье также показано, как специальные резисторы могут быть использованы в качестве датчика света и температуры.

Представление об электричестве

Новичок должен быть в состоянии представить себе электрический ток. Даже если вы поняли, что электричество состоит из электронов, движущихся по проводнику, это все еще очень трудно четко представить себе. Вот почему я предлагаю эту простую аналогию с водной системой, которую любой желающий может легко представить себе и понять, не вникая в законы.

Аналогия с гидравликой

Обратите внимание, как электрический ток похож на поток воды из полного резервуара (высокого напряжения) в пустой(низкое напряжение). В этой простой аналогии воды с электрическим током, клапан аналогичен токоограничительному резистору.
Из этой аналогии можно вывести некоторые правила, которые вы должны запомнить навсегда:
— Сколько тока втекает в узел, столько из него и вытекает
— Для того чтобы протекал ток, на концах проводника должны быть разные потенциалы.
— Количество воды в двух сосудах можно сравнить с зарядом батареи. Когда уровень воды в разных сосудах станет одинаковым, она перестанет течь, и при разряде аккумулятора, разницы между электродами не будет и ток перестанет течь.
— Электрический ток будет увеличиваться при уменьшении сопротивления, как и скорость потока воды будет увеличиваться с уменьшением сопротивления клапана.

Я мог бы написать гораздо больше умозаключений на основе этой простой аналогии, но они описаны в законе Ома ниже.

Резистор

Аналогия с гидравликой

Резисторы могут быть использованы для контроля и ограничения тока, следовательно, основным параметром резистора является его сопротивление, которое измеряется в Омах. Не следует забывать о мощности резистора, которая измеряется в ваттах (Вт), и показывает, какое количество энергии резистор может рассеять без перегрева и выгорания. Важно также отметить, что резисторы используются не только для ограничения тока, они также могут быть использованы в качестве делителя напряжения для получения низкого напряжения из большего. Некоторые датчики основаны на том, что сопротивление варьируется в зависимости от освещённости, температуры или механического воздействия, об этом подробно написано в конце статьи.

Закон Ома

Аналогия с гидравликой

Понятно, что эти 3 формулы выведены из основной формулы закона Ома, но их надо выучить для понимания более сложных формул и схем. Вы должны быть в состоянии понять и представить себе смысл любой из этих формул. Например, во второй формуле показано, что увеличение напряжения без изменения сопротивления приведет к росту тока. Тем не менее, увеличение тока не увеличит напряжение (хотя это математически верно), потому что напряжение — это разность потенциалов, которая будет создавать электрический ток, а не наоборот (см. аналогию с 2 емкостями для воды). Формула 3 может использоваться для вычисления сопротивления токоограничивающего резистора при известном напряжении и токе. Это лишь примеры, показывающие важность этого правила. Вы сами узнаете, как использовать их после прочтения статьи.

Последовательное и параллельное соединение резисторов

Понимание последствий параллельного или последовательного подключения резисторов очень важно и поможет вам понять и упростить схемы с помощью этих простых формул для последовательного и параллельного сопротивления:

Параллельное соединение

В этом примере схемы, R1 и R2 соединены параллельно, и могут быть заменены одним резистором R3 в соответствии с формулой:

В случае с 2-мя параллельно соединёнными резисторами, формулу можно записать так:

Кроме того, что эту формулу можно использовать для упрощения схем, она может быть использована для создания номиналов резисторов, которых у вас нет.
Отметим также, что значение R3 будет всегда меньше, чем у 2 других эквивалентных резисторов, так как добавление параллельных резисторов обеспечивает дополнительные пути
электрическому току, снижая общее сопротивление цепи.

Последовательное соединение

Последовательно соединённые резисторы могут быть заменены одним резистором, значение которого будет равно сумме этих двух, в связи с тем, что это соединение обеспечивает дополнительное сопротивление тока. Таким образом, эквивалентное сопротивление R3 очень просто вычисляется: R3=R1+R2

В интернете есть удобные он-лайн калькуляторы для расчета последовательного и параллельного соединения резисторов.

Токоограничивающий резистор

Цепь с лампой

Самая основная роль токоограничивающих резисторов — это контроль тока, который будет протекать через устройство или проводник. Для понимания их работы, давайте сначала разберём простую схему, где лампа непосредственно подключена к 9В батареи. Лампа, как и любое другое устройство, которое потребляет электроэнергию для выполнения определенной задачи (например, светоизлучение) имеет внутреннее сопротивление, которое определяет его текущее потребление. Таким образом, отныне, любое устройство может быть заменено на эквивалентное сопротивление.

Эквивалентная схема

Теперь, когда лампа будет рассматриваться как резистор, мы можем использовать закон Ома для расчета тока, проходящего через него. Закон Ома гласит, что ток, проходящий через резистор равен разности напряжений на нем, поделенное на сопротивление резистора: I=V/R или точнее так:
I=(V1-V2)/R
где (V1-V2) является разностью напряжений до и после резистора.

Добавляем токоограничивающий резистор

Теперь обратите внимание на рисунок выше, где добавлен токоограничительный резистор. Он будет ограничивать ток идущий к лампе, как это следует из названия. Вы можете контролировать, количество тока протекающего через лампу, просто выбрав правильное значение R1. Большой резистор будет сильно снижать ток, а небольшой резистор менее сильно (так же, как в нашей аналогии с водой).

Математически это запишется так:

Из формулы следует, что ток уменьшится, если значение R1 увеличится. Таким образом, дополнительное сопротивление может быть использовано для ограничения тока. Однако важно отметить, что это приводит к нагреву резистора, и вы должны правильно рассчитать его мощность, о чем будет написано дальше.

Вы можете воспользоваться он-лайн калькулятором для расчета токоограничительного резистора светодиода.

Резисторы как делитель напряжения

Делитель напряжения

Как следует из названия, резисторы могут быть использованы в качестве делителя напряжения, другими словами, они могут быть использованы для уменьшения напряжения путем деления его. Формула:

Если оба резистора имеют одинаковое значение (R1=R2=R), то формулу можно записать так:

Делитель напряжения

Другой распространенный тип делителя, когда один резистор подключен к земле (0В), как показано на рисунке 6B.
Заменив Vb на 0 в формуле 6А, получаем:

Узловой анализ

Теперь, когда вы начинаете работать с электронными схемами, важно уметь их анализировать и рассчитывать все необходимые напряжения, токи и сопротивления. Есть много способов для изучения электронных схем, и одним из наиболее распространенных методов является узловой, где вы просто применяете набор правил, и рассчитываете шаг за шагом все необходимые переменные.

Упрощенные правила узлового анализа

Определение узла

Узел

Узел – это любая точка соединения в цепи. Точки, которые связаны друг с другом, без других компонентов между ними рассматриваются как единый узел. Таким образом, бесконечное число проводников в одну точку считаются одним узлом. Все точки, которые сгруппированы в один узел, имеют одинаковые напряжения.

Определение ветви

Ветвь

Ветвь представляет собой набор из 1 и более компонентов, соединенных последовательно, и все компоненты, которые подсоединены последовательно к этой цепи, рассматриваются как одна ветвь.

Ветви

Все напряжения обычно измеряются относительно земли напряжение на которой всегда равно 0 вольт.

Ток всегда течет от узла с более высоким напряжением на узел с более низким.

Напряжение на узле может быть высчитано из напряжения около узла, с помощью формулы:
V1-V2=I1*(R1)
Перенесем:
V2=V1-(I1*R1)
Где V2 является искомым напряжением, V1 является опорным напряжением, которое известно, I1 ток, протекающий от узла 1 к узлу 2 и R1 представляет собой сопротивление между 2 узлами.

Читайте также:  Формула метода узлового напряжения

Точно так же, как и в законе Ома, ток ответвления можно определить, если напряжение 2х соседних узлах и сопротивление известно:
I 1=(V1-V2)/R1

Текущий входящий ток узла равен текущему выходящему току, таким образом, это можно записать так: I 1+ I3=I2

Важно, чтобы вы были в состоянии понимать смысл этих простых формул. Например, на рисунке выше, ток протекает от V1 до V2, и, следовательно, напряжение V2 должно быть меньше, чем V1.
Используя соответствующие правила в нужный момент, вы сможете быстро и легко проанализировать схему и понять её. Это умение достигается практикой и опытом.

Расчет необходимой мощности резистора

При покупке резистора вам могут задать вопрос: «Резисторы какой мощности вы хотите?» или могут просто дать 0.25Вт резисторы, поскольку они являются наиболее популярными.
Пока вы работаете с сопротивлением больше 220 Ом, и ваш блок питания обеспечивает 9В или меньше, можно работать с 0.125Вт или 0.25Вт резисторами. Но если напряжение более 10В или значение сопротивления менее 220 Ом, вы должны рассчитать мощность резистора, или он может сгореть и испортить прибор. Чтобы вычислить необходимую мощность резистора, вы должны знать напряжение через резистор (V) и ток, протекающий через него (I):
P=I*V
где ток измеряется в амперах (А), напряжение в вольтах (В) и Р — рассеиваемая мощность в ваттах (Вт)

На фото предоставлены резисторы различной мощности, в основном они отличаются размером.

Резисторы

Разновидности резисторов

Резисторы могут быть разными, начиная от простых переменных резисторов (потенциометров) до реагирующих на температуру, свет и давление. Некоторые из них будут обсуждаться в этом разделе.

Переменный резистор (потенциометр)

ПотенциометрПотенциометр

На рисунке выше показано схематическое изображение переменного резистора. Он часто упоминается как потенциометр, потому что он может быть использован в качестве делителя напряжения.

Потенциометры

Они различаются по размеру и форме, но все работают одинаково. Выводы справа и слева эквивалентны фиксированной точке (например, Va и Vb на рисунке выше слева), а средний вывод является подвижной частью потенциометра, а также используется для изменения соотношения сопротивления на левом и правом выводах. Следовательно, потенциометр относится к делителям напряжения, которым можно выставить любое напряжение от Va к Vb.
Кроме того, переменный резистор может быть использован как тока ограничивающий путем соединения выводов Vout и Vb, как на рисунке выше (справа). Представьте себе, как ток будет течь через сопротивление от левого вывода к правому, пока не достигнет подвижной части, и пойдет по ней, при этом, на вторую часть пойдет очень мало тока. Таким образом, вы можете использовать потенциометр для регулировки тока любых электронных компонентов, например лампы.

LDR (светочувствительные резисторы) и термисторы

Есть много датчиков основанных на резисторах, которые реагируют на свет, температуру или давление. Большинство из них включаются как часть делителя напряжения, которое изменяется в зависимости от сопротивления резисторов, изменяющегося под воздействием внешних факторов.

Терморезисторы
Терморезисторы

Фоторезистор
Фоторезистор (LDR)

Как вы можете видеть на рисунке 11A, фоторезисторы различаются по размеру, но все они являются резисторами, сопротивление которых уменьшается под воздействием света и увеличивается в темноте. К сожалению, фоторезисторы достаточно медленно реагируют на изменение уровня освещённости, имеют достаточно низкую точность, но очень просты в использовании и популярны. Как правило, сопротивление фоторезисторов может варьироваться от 50 Ом при солнце, до более чем 10МОм в абсолютной темноте.

Делитель напряжения

Как мы уже говорили, изменение сопротивления изменяет напряжение с делителя. Выходное напряжение можно рассчитать по формуле:

Если предположить, что сопротивление LDR изменяется от 10 МОм до 50 Ом, то Vout будет соответственно от 0.005В до 4.975В.

Термистор похож на фоторезистор, тем не менее, термисторы имею гораздо больше типов, чем фоторезисторы, например, термистор может быть либо с отрицательным температурным коэффициентом (NTC), сопротивление которого уменьшается с повышением температуры, или положительным температурным коэффициентом (PTC), сопротивление которого будет увеличиваться с повышением температуры. Сейчас термисторы реагируют на изменение параметров среды очень быстро и точно.

Схемотехническое обозначение резисторов

Схемотехническое обозначение резисторов

Про определение номинала резистора используя цветовую маркировку можно почитать здесь.

Шпакунов А. Опубликована: 2012 г. 0 2

Источник

Переменный резистор: назначение, устройство, виды, проверка мультиметром

В аппаратуре часто присутствуют подстраиваемые параметры. Для реализации используют переменный резистор. В зависимости от подключения они позволяют менять ток или напряжение в цепи.

Что такое резистор с изменяемым (переменным) сопротивлением

Среди радиоэлементов существуют детали, которые могут изменять свой основной параметр. Именно такими являются переменные или регулируемые резисторы. Они отличаются от постоянных тем, что их сопротивление можно плавно менять практически от нуля до определенного значения. Изменение происходит путем механического перемещения ползунка.

Есть у переменных резисторов разновидности — подстроечные и регулировочные. Чем отличаются переменные резисторы от подстроечных? Тем что подстроечные рассчитаны на небольшое количество регулировок. У некоторых моделей их количество может исчисляться сотнями или десятками (например, у НР1-9А перемещать ползунок можно не более 100 раз). Если посмотреть на таблицу ниже, можно увидеть что у некоторых подстроечных SMD резисторов циклов регулировки всего 10.

У переменных резисторов этот показатель значительно выше. Количество перемещений регулятора может исчисляться десятками и даже сотнями тысяч. Так что использовать подстроечные резисторы вместо переменных явно не стоит.

Основной недостаток переменных резисторов — их недолговечность. Контакт между резистивным слоем и щеткой постепенно ухудшается. Для акустической аппаратуры это может выражаться во все усиливающихся шумах, при подстройке частоты в радиоприемниках все тяжелее «поймать» нужную длину волны и т.д.

Способы производства

Переменный резистор может быть двух типов: проволочным и пленочным. У проволочных на диэлектрическую трубку намотана проволока, вдоль нее перемещается металлический передвижной контакт — ползунок. Его местоположение и определяет сопротивление элемента. Витки проволоки уложены вплотную друг к другу, но они разделены слоем лака с высокими диэлектрическими свойствами.

Переменные проволочные резисторы — это необязательно трубка с намотанной на нее проволокой как на фото выше. Такие элементы выпускались в основном несколько десятков лет назад. Современные мало чем отличаются от пленочных, разве что корпус чуть выше, так как проволока все-таки занимает больше места, чем пленка.

У пленочных переменных резисторов на диэлектрическую пластину (обычно выполнена в виде подковы) нанесен слой токопроводящего углерода. В этом случае контакт тоже подвижный, но он закреплен на стержне в центре подковы и чтобы изменить сопротивление, надо повернуть стержень.

Регулировочное переменное сопротивление может быть и проволочным, и пленочным, а подстроечные, в основном, делают пленочными. Есть у них внешнее отличие: нет стержня с ручкой, а есть плоский диск с отверстием под отвертку. Сопротивления этого типа используются только для наладки параметров при пуске или техническом обслуживании аппаратуры.

Кроме способа производства есть еще две формы выпуска: для обычного навесного монтажа и SMD-элементы для поверхностного монтажа. SMD резисторы отличаются миниатюрными размерами, выполнены по пленочной технологии.

Схематическое обозначение и цоколевка

В отличие от постоянных резисторов, у регулируемых не два вывода, а как минимум три. Почему как минимум? Потому что есть модели с дополнительными выводами — их может быть несколько. На электрических схемах переменные и подстроечные резисторы обозначаются прямоугольниками как постоянные, но имеют дополнительный вывод, который схематически представлен как ломанная линия, упирающаяся в середину изображения. Чтобы можно было отличить переменный от подстроечного, у переменного на конце третьего ввода рисуют стрелку, подстроечный изображается более длинной перпендикулярной линией без стрелки.

Читайте также:  Что означает электрохимический ряд напряжения металлов

Если говорить о расположении выводов, то средний вывод подключен к ползунку, крайние — к началу и концу резистивного элемента.

Виды и особенности применения

Переменных резисторов существует немалое количество, с их помощью регулируют звук, громкость, подстраивают частоту, регулируют яркость света. В общем, практически везде, где происходят изменения настроек при помощи бегунков или вращением рукояток стоят эти элементы. Но для разных задач нужны резисторы с различным характером изменений или с разным числом выводов. Вот о разных видах регулируемых сопротивлений и поговорим.

Характер изменения сопротивления

Не стоит думать, что при перемещении подвижного контакта сопротивление изменяется линейно. Такие модели есть, но они используются в основном для регулировки или настройки, в делителях частоты. Гораздо чаще требуется нелинейная зависимость. Переменные резисторы с нелинейной характеристикой бывают двух типов:

  • сопротивление изменяется по логарифмическому закону;
  • по показательному типу (обратному логарифмическому).

В акустике используют нелинейные элементы с сопротивлением, которое имеет потенциальную зависимость, в измерительной аппаратуре — по логарифмическому.

Сдвоенные, тройные, счетверенные

В плеерах, радиоприемниках и некоторых других видах бытовой аппаратуры часто применяются сдвоенные (двойные) переменные резисторы. В корпусе элемента скрыты две резистивные пластины. Внешне от обычных они отличаются наличием двух рядов выводов. Бывают двух типов:

  • С одновременным изменением параметров. Обычно применяются в стереоаппаратуре для одновременного изменения параметров двух каналов. Такие резисторы имеют запараллеленные бегунки. Поворачивая или сдвигая рукоятку, меняем сопротивление сразу двух резисторов.
  • С раздельным изменением параметров. Называются еще соосными, так как ось одного находится внутри оси другого. Если надо одной ручкой изменять различные параметры (громкость и баланс) подойдет этот тип резисторов. Механическая связь бегунков отсутствует, что позволяет менять сопротивление независимо друг от друга.

Обозначаются разные типы сдвоенных переменных резисторов на схемах по-разному. С наличием механической связи бегунков при близком расположении изображений резисторов на схеме, ставят связанные между собой стрелочки (на рисунке выше слева). Принадлежность к одному резистору указывается через нумерацию: две части обозначаются как R1.1 и R 1.2. Если обозначение частей спаренного переменного резистора находятся на схеме далеко друг от друга, связь указывается при помощи пунктирных линий (на рисунке выше справа). Буквенное обозначение такое же.

Двойной регулируемый резистор без физической связи между бегунками на схемах ничем не отличается от обычного регулируемого. Отличают их по буквенному обозначению с двумя цифрами, разделенными точкой через — как у спаренного — R15.1 и R15.2.

Частный случай сдвоенного переменного резистора — строенный, счетверенный и т.д. Они встречаются не так часто, все больше в акустической аппаратуре.

Дискретный переменный резистор

Чаще всего, изменение сопротивления при повороте ручки или передвижении ползунка происходит плавно. Но для некоторых параметров необходимо ступенчатое изменение параметров. Такие переменные сопротивления называют дискретными. Используют их для ступенчатого изменения частоты, громкости, некоторых других параметров.

Устройство этого типа резисторов отличается. По сути, внутри находится набор из постоянных резисторов, подключенных к каждому из выходов. При переключении подвижный контакт перескакивает с выхода на выход, подключая к цепи нужный в данный момент резистор. Принцип действия можно сравнить с многопозиционным переключателем.

С выключателем

Такие резисторы мы встречаем часто — в радио и других устройствах. Это с их помощью поворотом ручки включается питание, а затем регулируется громкость. Внешне их отличить невозможно, только по описанию.

На схемах переменные резисторы с выключателем отображаются рядом с контактной группой, то что это единое устройство, отображается при помощи пунктирной линии, которая соединяет контактную группу с корпусом переменного резистора. С одной стороны — возле изображения сопротивления — пунктир заканчивается точкой. Она показывает, возле какого из выводов происходит разрыв цепи. При повороте руки регулятора в эту сторону питание отключается.

Способы подключения: реостат и потенциометр

Любое регулируемое сопротивление может подключаться как реостат или потенциометр. Реостат изменяет силу тока в цепи, для этого подключается подвижный контакт и один из крайних выводов.

Потенциометр изменяет напряжение, при подключении задействуют все контакты, получая таким образом делитель напряжения.

Основные параметры

Выбирать переменный резистор необходимо не только по стандартным параметрам — сопротивлению, рассеиваемой мощности и допустимой погрешности. Как вы уже, наверное, поняли, придется еще и другие принять во внимание:

  • Диапазон изменения сопротивлений. Стоит обычно две цифры — минимальная и максимальная.
  • Рабочая температура.
  • Тепловое сопротивление. Показывает насколько увеличивается сопротивление при нагреве.
  • Эффективный угол поворота регулятора.

Конечно, основные параметр важны и именно они являются определяющими. Но стоит обращать внимание и на температурный режим. Если оборудование будет работать в помещении, важно, чтобы резистор не перегревался. Для техники, которая будет эксплуатироваться на открытом воздухе, важен нижний диапазон — если предусматривается работа в зимнее время, они должны переносить минусовые температуры.

Как проверить переменный резистор при помощи тестера

Проверка переменных резисторов не слишком отличается от тестирования обычных. Нужен будет мультиметр с функцией омметра. Положение щупов стандартное, диапазон измерений выбираем в зависимости от измеряемого параметра. Если меряем минимальное сопротивление, имеет смысл поставить самый малый диапазон. Для измерения максимального сопротивления, подбираем в зависимости от заявленной характеристики. При измерениях положение щупов произвольное, так как полярность подаваемого тестового напряжения неважна.

Провести надо будет несколько несложных замеров:

  • Максимальное сопротивление измеряется между крайними выводами.
  • Чтобы измерить минимальное сопротивление, бегунок переводят в крайнее левое положение. Измерения проводят между крайним левым и средним (первым и вторым выводами). Полученные измерения сравнивают с заявленным диапазоном. Обычно бывают отклонения в ту или другую сторону. Это не страшно, если величина отклонений находится в рамках допуска (зависит от точности).
  • Главная проблема переменных резисторов — ухудшение контакта между щеткой и токопроводящим элементом. Подключаем мультиметр в режиме омметра к одному из крайних выводов и центральному, затем медленно вращаем ось резистора и наблюдаем за показаниями мультиметра. Если резистор исправен, но показания должны изменяться плавно. Проверку рекомендуется повторить переключив мультиметр ко второму крайнему выводу резистора (см. видео ниже).

Источник



Переменные и подстроечные резисторы. Реостат.

В одной из предыдущих статей мы обсудили основные аспекты, касающиеся работы с резисторами, так вот сегодня мы продолжим эту тему. Все, что мы обсуждали ранее, касалось, в первую очередь, постоянных резисторов, сопротивление которых представляет из себя не изменяющуюся величину. Но это не единственный существующий вид резисторов, поэтому в данной статье мы уделим внимание элементам, имеющим переменное сопротивление, в частности, переменным резисторам.

Переменный резистор.

Итак, чем же отличается переменный резистор от постоянного? Собственно, здесь ответ прямо следует из названия этих элементов ? Величину сопротивления переменного резистора, в отличие от постоянного, можно изменить. Каким способом? А вот это мы как раз и выясним! Для начала давайте рассмотрим условную схему переменного резистора:

Переменный резистор

Сразу же можно отметить, что тут в отличие от резисторов с постоянным сопротивлением в наличии имеется три вывода, а не два. Сейчас разберемся зачем они нужны и как все это работает…

Итак, основной частью переменного резистора является резистивный слой, имеющий определенное сопротивление. Точки 1 и 3 на рисунке являются концами резистивного слоя. Также важной частью резистора является ползунок, который может изменять свое положение (он может занять любое промежуточное положение между точками 1 и 3, например, он может оказаться в точке 2 как на схеме).

Читайте также:  Как поднять напряжение накала

Таким образом, в итоге мы получаем следующее. Сопротивление между левым и центральным выводами резистора будет равно сопротивлению участка 1-2 резистивного слоя. Аналогично сопротивление между центральным и правым выводами будет численно равно сопротивление участка 2-3 резистивного слоя. Получается, что перемещая ползунок мы можем получить любое значение сопротивления от нуля до R_ . А R_ – это ни что иное как полное сопротивление резистивного слоя.

Конструктивно переменные резисторы бывают поворотные, то есть для изменения положения ползунка необходимо крутить специальную ручку (такая конструкция подходит для резистора, который изображен на нашей схеме). Также резистивный слой может быть выполнен в виде прямой линии, соответственно, ползунок будет перемещаться прямо. Такие устройства называют движковыми или ползунковыми перемененными резисторами. Поворотные резисторы очень часто можно встретить в аудио-аппаратуре, где они используются для регулировки громкости/баса и т. д. Вот как они выглядят:

Поворотный резистор

Переменный резистор ползункового типа выглядит несколько иначе:

Ползунковый резистор

Часто при использовании поворотных резисторов в качестве регуляторов громкости используют резисторы с выключателем. Наверняка вы не раз сталкивались с таким регулятором – к примеру на радиоприемниках. Если резистор находится в крайнем положении (минимальная громкость/устройство выключено), то если его начать вращать, раздастся ощутимый щелчок, после которого приемник включится. А при дальнейшем вращении громкость будет увеличиваться. Аналогично и при уменьшении громкости – при приближении к крайнему положению снова будет щелчок, после которого устройство выключится. Щелчок в данном случае говорит о том, что питание приемника было включено/отключено. Выглядит такой резистор так:

Переменный резистор с выключателем

Как видите, здесь есть два дополнительных вывода. Они то как раз и подключаются в цепь питания таким образом, чтобы при вращении ползунка цепь питания размыкалась и замыкалась.

Есть еще один большой класс резисторов, имеющих переменное сопротивление, которое можно изменять механически – это подстроечные резисторы. Давайте уделим немного времени и им!

Подстроечный резистор.

Только для начала уточним терминологию… По сути подстроечный резистор является переменным, ведь его сопротивление можно изменить, но давайте условимся, что при обсуждении подстроечных резисторов под переменными резисторами мы будем иметь ввиду те, которые мы уже обсудили в этой статье (поворотные, ползунковые и т. д). Это упростит изложение, поскольку мы будем противопоставлять эти типы резисторов друг другу. Да и, к слову, в литературе зачастую под подстроечными резисторами и переменными понимаются разные элементы цепи, хотя, строго говоря, любой подстроечный резистор также является и переменным в силу того факта, что его сопротивление можно изменить.

Итак, отличие подстроечных резисторов от переменных, которые мы уже обсудили, в первую очередь, заключается в количестве циклов перемещения ползунка. Если для переменных это число может составлять и 50000, и даже 100000 (то есть ручку громкости можно крутить практически сколько угодно ? ), то для подстроечных резисторов эта величина намного меньше. Поэтому подстроечные резисторы чаще всего используются непосредственно на плате, где их сопротивление меняется только один раз, при настройке прибора, а при эксплуатации значение сопротивления уже не меняется. Внешне подстроечный резистор выглядит совсем не так как упомянутые переменные:

Подстроечный резистор

Из-за небольшой износоустойчивости не рекомендуется применять подстроечные резисторы вместо переменных – в цепях, в которых регулировка сопротивления будет производиться довольно часто.

Обозначение переменных резисторов немного отличается от обозначения постоянных:

Обозначение резисторов

Собственно, мы обсудили все основные моменты, касающиеся переменных и подстроечных резисторов, но есть еще один очень важный момент, который невозможно обойти стороной.

Часто в литературе или в различных статьях вы можете встретить термины потенциометр и реостат. В некоторых источниках так называют переменные резисторы, в других в эти термины может вкладываться какой-нибудь иной смысл. На самом деле, корректная трактовка терминов потенциометр и реостат есть только одна. Если все термины, которые мы уже упоминали в этой статье относились,в первую очередь, к конструктивному исполнению переменных резисторов, то потенциометр и реостат – это разные схемы включения (!) переменных резисторов. То есть, к примеру, поворотный переменный резистор может выступать и в роли потенциометра и в роли реостата – все зависит от схемы включения. Начнем с реостата.

Реостат.

Реостат

Реостат (переменный резистор, включенный по схеме реостата) в основном используется для регулировки силы тока. Если мы включим последовательно с реостатом амперметр, то при перемещении ползунка будем видеть меняющееся значение силы тока. Резистор R_1 в этой схеме исполняет роль нагрузки, ток через которую мы и собираемся регулировать переменным резистором. Пусть максимальное сопротивление реостата равно R_ , тогда по закону Ома максимальный ток через нагрузку будет равен:

Здесь мы учли то, что ток будет максимальным при минимальном значении сопротивления в цепи, то есть когда ползунок в крайнем левом положении. Минимальный ток будет равен:

Вот и получается, что реостат выполняет роль регулировщика тока, протекающего через нагрузку. В данной схеме есть одна проблема – при потере контакта между ползунком и резистивным слоем цепь окажется разомкнутой и через нее перестанет протекать ток. Решить эту проблему можно следующим образом:

Включение реостата

Отличие от предыдущей схемы заключается в том, что дополнительно соединены точки 1 и 2. Что это дает в обычном режиме работы? Да ничего, никаких изменений ? Поскольку между ползунком резистора и точкой 1 ненулевое сопротивление, то весь ток потечет напрямую на ползунок, как и при отсутствии контакта между точками 1 и 2. А что же произойдет при потере контакта между ползунком и резистивным слоем? А эта ситуация абсолютно идентична отсутствию прямого соединения ползунка с точкой 2. Тогда ток потечет через реостат (от точки 1 к точке 3), и величина его будет равна:

То есть при потере контакта в данной схеме будет всего лишь уменьшение силы тока, а не полный разрыв цепи как в предыдущем случае.

С реостатом мы разобрались, давайте рассмотрим переменный резистор, включенный по схеме потенциометра.

Потенциометр.

Потенциометр

Не пропустите статью про измерительные приборы в электрических цепях – ссылка.

Потенциометр, в отличие от реостата, используется для регулировки напряжения. Именно по этой причине на нашей схеме вы видите целых два вольтметра! Ток протекающий через потенциометр, от точки 3 к точке 1, при перемещении ползунка остается неизменным, но меняется величины сопротивления между точками 2-3 и 2-1. А поскольку напряжение прямо пропорционально силе тока и сопротивлению, то оно будет меняться.

При перемещении ползунка вниз сопротивление 2-1 будет уменьшаться, соответственно, уменьшаться будут и показания вольтметра 2. А сопротивление участка 2-3 вырастет, а вместе с ним и напряжение на вольтметре 1. При этом в сумме показания вольтметров будут равны напряжению источника питания, то есть 12 В. В крайнем верхнем положении на вольтметре 1 будет 0 В, а на вольтметре 2 – 12 В. На рисунке ползунок расположен в среднем положении, и показания вольтметров, что абсолютно логично, равны ?

На этом мы заканчиваем рассматривать переменные резисторы, в следующей статье речь пойдет о возможных соединениях резисторов между собой, спасибо за внимание, рад буду видеть вас на нашем сайте! ?

Источник