Меню

Параллельное соединение транзисторов для увеличения мощности

Соединение транзисторов параллельно.Как умощнить маломощный транзистор

Чтобы повысить мощность и ток коллектора одного маломощного транзистора,достаточно параллельно ему соединить еще один или несколько однотипных транзисторов.Если соединить два транзистора параллельно,то никаких дополнительных деталей может не потребоваться.Но если транзисторов будет пять,как в моем случае,потребуется применение выравнивающих ток резисторов,которые требуются подключить в эмиттеры транзисторов.Сопротивление таких резисторов надо рассчитывать по формуле,я подобрал экспериментально.

Для эксперимента,применил задающий генератор с выходной мощностью около 100мВт на частоте примерно 3.5МГц. В усилитель мощности поставил вначале один кт315. Такой транзистор максимум может выдать мощность 190мВт в течении нескольких секунд,после чего выходит из строя.Далее,соединил пять кт315 в параллель без резисторов.Такой общий транзистор выдает 440мВт,но через минуту один или два транзистора сильно нагреваются,из-за чего этот общий транзистор меняет свои характеристики и сигнал искажается и мощность падает.

Потом каждому транзистору подключил в эмиттер по резистору сопротивлением 10 Ом каждый.Такой общий транзистор также выдает мощность в нагрузку 440 мВт на частоте примерно 3.5МГц и сигнал,даже через пять минут работы не искажается и мощность не падает.Все транзисторы теплые,один нагрет чуть больше чем другие,но его работа стабильна.

Вывод: резисторы в эмиттере транзисторов,которые подключены параллельно,делают работу такого транзистора стабильнее.Мощность маломощного транзистора можно реально увеличить,подключив параллельно ему такие-же транзисторы.

Источник

Увеличение мощности стабилизированных источников

Одним из наиболее распространенных требований при доработке источ­ников питания является увеличение выходного тока или мощности. Часто это может быть связано со стоимостью и трудностями при проектирова­нии и изготовлении нового источника. Рассмотрим несколько способов увеличения выходной мощности существующих источников.

Первое, что вообще приходит на ум, — параллельное включение мощных транзисторов. В линейном стабилизаторе это относилось бы к проходным транзисторам или, в некоторых случаях, к параллельным стабилизирующим транзисторам. В таких источниках простое соедине­ние одноименных выводов транзисторов обычно не дает практических результатов из-за неравномерного распределения тока между транзисто­рами. При повышении рабочей температуры неравномерное распределе­ние нагрузки становится еще большим до тех пор, пока практически весь ток нафузки не потечет через один из транзисторов. Предложен­ный вариант может быть реализован при условии, что параллельно со­единенные транзисторы имеют совершенно идентичные характеристики и работают при одинаковой температуре. Такое условие практически не реализуемо из-за относительно больших разбросов в характеристиках биполярных транзисторов.

С другой стороны, если в линейном стабилизаторе используются мощные МОП-транзисторы, простое их запараллеливание работать бу­дет, потому что эти устройства имеют температурные коэффициенты другого знака по сравнению с мощными биполярными транзисторами и не будут подвергаться сильному нафеву или перераспределению тока. Но МОП-транзисторы использовались чаще в ИИП, чем в линейных стабилизаторах (наше рассмотрение этих не импульсных стабилизаторов дает некоторое понимание проблем параллельного включения транзис­торов и в импульсных стабилизаторах).

Рис. 17.24 показывает, как осуществлять параллельное включение транзисторов в линейном или импульсном источнике питания. Резисто­ры с небольшим сопротивлением, включенные в цепи эмиттеров бипо­лярных транзисторов, обеспечивают индивидуальное смещение между базой и эмиттером, что препятствует возможности увеличения доли тока, протекающего через какой-либо из транзисторов. Хотя примене­ние этих так называемых балластных эмиттерных резисторов очень эффективно при опасном перераспределении токов или повышении тем­пературы, следует использовать самое минимальное сопротивление ре­зисторов, которое достаточно для этой цели. В противном случае будет рассеиваться заметная мощность, что особенно нежелательно в импуль­сных стабилизаторах, где основным достоинством является высокий к.п.д. Не удивительно поэтому, что балластные эмиттерные резисторы имеют сопротивления порядка 0,1 Ома, 0,05 Ома или меньше, а факти­ческая величина будет, конечно, зависеть прежде всего от тока эмиттера конкретного источника. В качестве оценки можно принять величину 1//, где / – максимальный ток эмиттер (или коллектора).

Вместо эмиттерных резисторов, иногда можно выравнить распреде­ление тока в параллельно соединенных биполярных транзисторах, включая несколько более высокоомные резисторы в цепь базы. Они обычно имеют сопротивление от 1 до 10 Ом. Хотя полное рассеяние мощности в этом случае меньше, но эффективность ниже, чем при ис­пользовании эмиттерных резисторов.

clip_image002

Рис. 17.24. Способ параллельного включения мощных биполярных транзисторов. Любая попытка отдельного транзистора пропускать больший ток или перегреться предотвращается благодаря напряжению смещения на его эмиттерном резисторе.

В импульсном стабилизаторе недостаточно просто позаботиться о распределении тока в описанных статических условиях; во внимание не­обходимо также принять динамику процесса переключения. Это требует большего внимания к согласованности транзисторных характеристик. Практически обнаружено, что два мощных транзистора одного и того же типа и названия могут вести себя при переключении по-разному, один из них может быть несколько медленнее, чем другой. Хотя опасность такого расхождения можно свести на нет введением балластных эмит­терных резисторов, их сопротивления, возможно, придется выбирать до­статочно высокими по сравнению со случаем, когда характеристики транзисторов близки. Однако даже если динамические характеристики отдельных транзисторов в параллельном соединении достаточно близки.

влияние неравной длины проводников или неидентичная разводка могут вызывать существенные различия в рассеиваемой мощности.

Чаще всего оказывается, что можно удвоить выходную мощность, соединив параллельно два биполярных транзистора и, скорее всего, не потребуется модернизировать задающий каскад. Однако в других случа­ях, вероятно, будет необходим больший ток от задающего устройства. Таким образом, при трех, четырех или большем числе выходных транзи­сторов в задающем каскаде также потребуется параллельное соединение транзисторов. Иногда оказывается, что в задающем устройстве целесо­образнее применить транзистор с большей номинальной мощностью.

Читайте также:  Гибридный усилитель мощности зч джеффа маколэя

Мощные МОП-транзисторы можно включать параллельно без балласт­ных резисторов. Часто четыре или больше таких транзисторов могут рабо­тать от задающего каскада, который работал с одним транзистором. Однако метод, показанный на рис. 17.25, рекомендуется для предупреждения пара­зитных колебаний в диапазоне метровых и дециметровых волн. С феррито-выми бусинками может потребоваться некоторое экспериментирование. Ча­сто эффективное затухание обеспечивается введением двух или трех витков провода. Другой метод предлагает использовать небольшие пленочные рези-стсфы с сопротивлением от 100 до 1000 Ом в цепи затвора. Стабилитроны, показанные на рис. 17.25, включены в структуры специально разработанных МОП-транзисторов. Другие МОП-транзисторы не имеют такой защиты зат­вора, но метод параллельного включения остается тем же самым.

clip_image004

Рис. 17.25. Способ параллельного включения мощных МОП-тран­зисторов. Это простой путь увеличить нагрузочную способность по току как импульсных, так и линейных стабилизаторов. Ферритовая бусинка в цепи затвора подавляет высокочастотную паразитную гене­рацию. Стабилитроны находятся внутри транзисторов. Siliconix.

Мощный импульсный каскад на МОП-транзисторе может применяться также в последовательной схеме, чтобы обеспечить более высокое напря­жение на выходе. Схема такого устройства изображена на рис. 17.26 для двух транзисторов, но их количество может быть и больше. Интересной чертой этого метода является то, что входной сигнал подается только на один МОП-транзистор. Происходит это потому, что на затворе другого

МОП-траНзистора имеется напряжение +15 В относительно земли; этот МОП-транзистор готов проводить, как только цепь его истока оказывается замкнутой запускаемым МОП-транзистором. Такая конструкция позволяет удвоить мощность, подводимую к нагрузке по сравнению с той которую можно получить от одного МОП-Транзистора; в то же самое время каждый МОП-транзистор работает в пределах номинального напряжения между стоком и истоком. /?С-цепь в цепи затвора верхнего МОП-транзистора осу­ществляет динамическую балансировку напряжений на затворах двух МОП-транзисторов. В первом приближении R\C\ должно равняться В2С2,

clip_image006

Рис. 17.26. Последовательное соединение мощных МОП-транзисторов для удвоенного рабочего напряжения. Этот метод можно распрост­ранить на большее число мощных МОП-транзисторов. Обратите вни­мание, что сигнал запуска поступает только на один затвор. Хотя пока­занный специализированный мощный МОП-транзистор имеет внутренний стабилитрон, большинство других его не имеют. Siliconex.

Поскольку появились мощные высоковольтные МОП-транзисторы, последовательная конфигурация не используется как раньше, когда эти транзисторы только стали конкурентоспособными с биполярными тран­зисторами. Кроме того, свойственная им легкость работы в параллель­ном режиме исключает трудности при расчете схем. Параллельная кон­фигурация проще в реализации, потому что легче обеспечить одинаковые температурные условия, которые требуется в обеих схемах для опти­мальной работы. Последовательный вариант может быть выбран в сис­темах, где постоянное рабочее напряжение превышает номинальное значение для одного МОП-транзистора.

Мало того, что некоторые мощные МОП-транзисторы содержат во входной цепи эквивалент стабилитрона для защиты затвора, изготовите­ли этих устройств могут включить в выходную цепь «фиксирующий» диод. По этой причине во многих ИИП и схемах управления двигателя­ми, использующих мощные МОП-транзисторы не включают обычный фиксирующий диод, который используется в схеме с биполярным тран­зистором. Это можно отнести к дополнительным достоинствам, так как уменьшается число используемых компонент и снижается стоимость. Когда для увеличения допустимой мощности применяется параллельное соединение, это может быть особенно существенно, потому что не тре­буется рассчитанного на большие токи, дорогого «внешнего» диода. Однако следует изучить технические условия изготовителя, чтобы уста­новить, подходит ли для конкретного применения используемое устрой­ство. В некоторых случаях может понадобиться внешний диод Шотки или диод с малым временем восстановления, чтобы обеспечить очень высокую скорость переключения индуктивных нагрузок.

Способ повышения выходной мощности с использованием комплемен­тарных транзисторов уже упоминался на примере биполярных транзисто­ров (рис. 2.8 и 2.12). До недавнего времени простые схемы и хорошие ха­рактеристики этого метода были доступны только при использовании биполярных мощных транзисторов, где имелись согласованные пары прп и рпр транзисторов. Однако теперь несколько изготовителей разместили на рынке /^-канальные МОП-транзисторы, имеющие характеристики, зеркаль­ные по отношению к л-канальным, поэтому можно создавать схемы на мощных комплементарных МОП-транзисторах. Хотя схемы на биполяр­ных транзисторах, изображенные на рис. 2.8 и рис. 2.12, являются генера­торами с насыщаемым сердечником, стоит отметить, что лишь небольшие изменения необходимы в схеме и режиме работы, чтобы получить инвер­торы или преобразователи с внешним возбуждением. Кроме того, исполь­зуя цепи обратной связи и управления, подобные тем, что применялись в других стабилизаторах, можно реализовать стабилизированные источники.

В настоящее время имеется несколько полупроводниковых фирм, та­ких как International Rectifier, Intersil, Supertex и Westinghouse, которые производят мощные МОП-транзисторы, подходящие для применения в комплементарных схемах. Препятствия, которые задержали появление кремниевых рпр мощных транзисторов, не столь серьезны при производ­стве /^-канальных МОП-транзисторов. Поэтому можно ожидать, что дру­гие компании скоро будут торговать устройствами, содержащими пару комплементарных МОП-транзисторов для импульсных применений.

Еще одна схема, в которой складываются мощности, показана на рис. 17.27. Здесь выходы идентичных выходных каскадов соединены последова­тельно, что позволяет эффективно объединять возможности транзисторов без применения балластных резисторов. Это прекрасный способ обойтись без мощных транзисторов, работающих с более высокими напряжениями или номинальными токами, – такие устройства могут быть или недоступ­ны или очень дороги. Это устройство лучше рассмотреть на начальном этапе конструирования инвертора или стабилизированного источника, тогда будет легко определить входные и выходные обмотки трансформа­торов. Фазирование вторичных обмоток выходных трансформаторов дол­жно быть таким, чтобы выходные напряжения складывались. Относитель­но легко получить равный вклад токов от мощных транзисторов и хорошо, если все транзисторы работают при одной и той же температуре. Обычно это достигается путем применения общего радиатора. В этом от­ношении схема с общим коллектором, а не показанная на рисунке схема с общим эмиттером, более предпочтительна, поскольку не требуется ни­какой изоляции между корпусом транзистора и радиатором.

Читайте также:  Изменение мощности не допускается

clip_image008

Рис. 17.27. Схема удвоения выходной мощности инвертора или им­пульсного стабилизатора. Этот метод не требует дорогих или недо­ступных высоковольтных или предназначенных для работы при больших токах транзисторов. В отличие от схем с параллельным включением транзисторов здесь не требуются балластные резисторы, рассеивающие мощность.

К недостаткам этого метода можно отнести высокую стоимость, а также увеличенные габариты и вес. Это справедливо потому, что два трансформатора дороже, чем один, имеющий вдвое большую номиналь­ную мощность. Габариты двух трансформаторов будут, как правило, превышать размеры одного трансформатора той же мощности. Суще­ственны или нет эти факторы зависит, конечно, от конкретных обстоя­тельств, связанных с особенностями системы.

Хотя на рис. 17.27 показаны два выходных каскада, объединять можно и большее число каскадов. Но основную идею, предлагаемую здесь, не сле­дует путать с вариантом, показанным на рис. 2.10, где используется один выходной трансформатор, а пары выходных транзисторов соединены пос­ледовательно по отношению к источнику постоянного напряжения. Схема на рис. 17.27 предпочтительнее для инверторов с внешним возбуждением и ИИП, а схема на рис. 2-10 лучше подходит для реализации инвертора с на­сыщаемым сердечником. В схеме, приведенной на рис. 17.27, можно ис­пользовать один сердечник для всех входных трансформаторов и один для выходных. Конечно, это так, однако использование отдельных трансфор­маторов, как показано на рисунке, представляется наиболее разумным для испытаний, оценки возможностей, измерения и эксплуатации.

Примером гибкости схемы на рис. 17.27 является возможность исполь­зовать в качестве одной из пар мощные /?/7/?-транзисторы. Хотя это не при­водит к схеме с комплементарными транзисторами в обычном смысле, но в некоторых случаях оказывается проще получить требуемую суммарную мощность. По переменному току функционирование схемы не изменилось.

Интересный способ удвоить выходной ток и, поэтому, выходную мощность одно-транзисторного импульсного стабилизатора, показан на рис. 17.28. Сигнал на дополнительный переключающий транзистор Q2 поступает со сдвигом на 180** по отношению к сигналу, поступающему на основной транзистор Q\. Этот сдвиг фазы осуществляется с помо­щью трансформатора 71. Хотя отношение числа витков первичной и вторичной обмоток можно взять равным 1, низкие входные сопротив­ления транзисторов обычно требуют для получения оптимальных ре­зультатов использовать понижающий трансформатор. В этом случае вторичная обмотка с отводом от середины обеспечит более низкое на­пряжение на базе каждого транзистора, чем имеющееся на первичной обмотке. (Это, кроме того, снижает вероятность обратного пробоя эмиттерных переходов транзисторов. Полезным может оказаться вклю­чение в цепь базы (на рисунке не показано) резистора с малым сопро­тивлением.)

Потребуется также катушка индуктивности L2 аналогичная катуш­ке L\, Дополнительный «фиксирующий» диод D2 идентичен диоду D\. Удвоение выходного тока стабилизатора не единственное, что дает до­полнительный переключающий транзистор. В этой схеме удваивается частота пульсаций и вдвое уменьшается их амплитуда. Таким образом, с прежней емкостью выходного конденсатора С1 на выходе стабилиза­тора имеем более чистое постоянное напряжение. Другой вариант со­стоит в том, чтобы сохранить характеристики одно-транзисторной схе­мы, уменьшая емкость конденсатора С1. Этот вариант позволяет несколько сократить габариты и стоимость. Если следовать этой мето­дике на начальной стадии проектирования, то можно выбрать менее дорогие переключающие транзисторы, потому что каждый должен бу­дет переключаться с частотой, равной половине частоты пульсаций на выходе.

clip_image010

Рис. 17.28. Метод удвоения выходного тока импульсного стабили­затора. Этот метод обеспечивает не только увеличение выходной мощ­ности, но и уменьшает пульсации выходного напряжения. (А) Упро­щенная схема обычного импульсного стабилизатора. (В) Моди­фицированная схема для удвоения выходного тока.

Чтобы воспользоваться достоинствами этой схемы, нестабилизиро­ванный источник постоянного напряжения должен, конечно, обеспечи­вать ток, вдвое больший требуемого для одно-транзисторного стабили­затора. Схемы на рис. 17.28 А и В представляют собой стабилизаторы с внешним возбуждающим сигналом, имеющим фиксированную частоту. Если применять этот метод в автоколебательном стабилизаторе, то мо­гут встретиться некоторые трудности и, естественно, потребуется экспе­риментальная доводка. Связано это с тем, что частота пульсаций, ис­пользуемых в цепи обратной связи, вдвое выше частоты переключений.

Источник



1. Транзистор.

Буквально сразу после появления полупроводниковых приборов, скажем, транзисторов, они стремительно начали вытеснять электровакуумные приборы и, в частности, триоды. В настоящее время транзисторы занимают ведущее положение в схемотехнике.

Начинающему, а порой и опытному радиолюбителю-конструктору, не сразу удаётся найти нужное схемотехническое решение или разобраться в назначении тех или иных элементов в схеме. Имея же под рукой набор «кирпичиков» с известными свойствами гораздо легче строить «здание» того или другого устройства.

Не останавливаясь подробно на параметрах транзистора (об этом достаточно написано в современной литературе, например, в [1]), рассмотрим лишь отдельные свойства и способы их улучшения.

Одна из первых проблем, возникающих перед разработчиком, — увеличение мощности транзистора. Её можно решить параллельным включением транзисторов (рис.1). Токовыравнивающие резисторы в цепях эмиттеров способствуют равномерному распределению нагрузки.

Оказывается, параллельное включение транзисторов полезно не только для увеличения мощности при усилении больших сигналов, но и для уменьшения шума при усилении слабых. Уровень шумов уменьшается пропорционально корню квадратному из количества параллельно включённых транзисторов.

Читайте также:  Мощность усилителя для колонок 120 ватт

Защита от перегрузки по току наиболее просто решается введением дополнительного транзистора (рис.2). Недостаток такого самозащитного транзистора — снижение КПД из-за наличия датчика тока R. Возможный вариант усовершенствования показан на рис.3. Благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, а значит, и рассеиваемую на нём мощность.

Для защиты от обратного напряжения параллельно выводам эмиттер-коллектор обычно включают диод, как, например, в составных транзисторах типа КТ825, КТ827.

Составной транзистор (рис. 4) имеет повышенное выходное сопротивление и значительно уменьшенный эффект Миллера благодаря каскодному включению полевого и биполярного транзисторов. За счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор, изображённый на рис.5, имеет ещё более высокие динамические характеристики. Единственное условие реализации такого транзистора — более высокое напряжение отсечки второго транзистора. Входной транзистор можно заменить на биполярный.

Одна из особенностей транзисторного ключа при изменяющейся нагрузке — изменение времени выключения транзистора. Чем больше насыщение транзистора при минимальной нагрузке, тем больше время выключения. Избежать глубокого насыщения можно путём предотвращения прямого смещения перехода база-коллектор. Наиболее простая реализация этой идеи с помощью диода Шоттки представлена на рис.6. На рис.7 изображён более сложный вариант — схема Бейкера.

При достижении напряжением на коллекторе транзистора напряжения базы «лишний» базовый ток сбрасывается через коллекторный переход, предотвращая насыщение. Далее показаны схемы ограничения насыщения относительно низковольтных ключей с датчиками тока базы (рис.8) и тока коллектора (рис.9).

При работе транзистора в ключевом режиме, когда требуется быстрое его переключение из открытого состояния в закрытое и обратно, иногда применяют форсирующую RC-цепочку (рис.10). В момент открывания транзистора заряд конденсатора увеличивает его базовый ток, что способствует сокращению времени включения. Напряжение на конденсаторе достигает падения напряжения на базовом резисторе, вызванного током базы. В момент закрывания транзистора конденсатор, разряжаясь, способствует рассасыванию неосновных носителей в базе, сокращая время выключения.

Повысить крутизну транзистора (отношение изменения тока коллектора (стока) к вызвавшему его изменению напряжения на базе (затворе) при постоянном Uкэ Uси)) можно с помощью схемы Дарлингтона (рис. 11). Резистор в цепи базы второго транзистора (может отсутствовать) применяют для задания тока коллектора первого транзистора. Аналогичный составной транзистор с высоким входным сопротивлением (благодаря применению полевого транзистора) представлен на рис. 12. Составные транзисторы, представленные на рис. 13 и 14, собраны на транзисторах разной проводимости по схеме Шиклаи.

Введение в схемы Дарлингтона и Шиклаи дополнительных транзисторов, как показано на рис. 15 и 16, увеличивает входное сопротивление второго каскада по переменному току и соответственно коэффициент передачи [2]. Применение аналогичного решения в транзисторах рис. 12 и 14 даёт соответственно схемы рис. 17 и 18, линеаризируя крутизну транзистора [3].

Широкополосный транзистор с высоким быстродействием представлен на рис. 19 [4]. Повышение быстродействия достигнуто в результате уменьшения эффекта Миллера аналогично рис.4 и 5.

«Алмазный» транзистор по патенту ФРГ представлен на рис. 20. Возможные варианты его включения изображены на рис.21 — 23. Характерная особенность этого транзистора-отсутствие инверсии на коллекторе. Отсюда и увеличение вдвое нагрузочной способности схемы рис.23.

Мощный составной транзистор с напряжением насыщения около 1,5 В изображён на рис.24. Мощность транзистора может быть значительно увеличена путём замены транзистора VT3 на составной транзистор (рис. 1).

Аналогичные рассуждения можно привести и для транзистора p-n-p типа, а также полевого транзистора с каналом p-типа. При использовании транзистора в качестве регулирующего элемента или в ключевом режиме возможны два варианта включения нагрузки: в цепь коллектора (рис.25-27) или в цепь эмиттера (рис.28-30).

Как видно из приведённых формул, наименьшее падение напряжения, а соответственно и минимальная рассеиваемая мощность — на простом транзисторе с нагрузкой в цепи коллектора. Применение составного транзистора Дарлингтона и Шиклаи с нагрузкой в цепи коллектора равнозначно. Транзистор Дарлингтона может иметь преимущество, если коллекторы транзисторов не объединять. При включении нагрузки в цепь эмиттера преимущество транзистора Шиклаи очевидно.

1. Степаненко И. Основы теории транзисторов и транзисторных схем. — М.: Энергия, 1977.
2. Патент США 4633100: Публ. 20-133-83.
3. А.с. 810093.
4. Патент США 4730124: Публ.22-133-88. — С.47.

1. Увеличение мощности транзистора.

Резисторы в цепях эмиттеров нужны для равномерного распределения нагрузки; уровень шумов уменьшается пропорционально квадратному корню из количества параллельно включённых транзисторов.

2. Защита от перегрузки по току.

Недостаток-снижение КПД из-за наличия датчика тока R.

Другой вариант — благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, и на нём будет рассеиваться меньшая мощность.

3. Составной транзистор с высоким выходным сопротивлением.

Из-за каскодного включения транзисторов значительно уменьшен эффект Миллера.

Другая схема — за счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор имеет ещё более высокие динамические характеристики (единственное условие — второй транзистор должен иметь более высокое напряжение отсечки). Входной транзистор можно заменить на биполярный.

4. Защита транзистора от глубокого насыщения.

Предотвращение прямого смещения перехода база-коллектор с помощью диода Шоттки.

Более сложный вариант — схема Бейкера. При достижении напряжением на коллекторе транзистора напряжения базы «лишний» базовый ток сбрасывается через коллекторный переход, предотвращая насыщение.

Источник