Меню

Определить наибольшее напряжение сечение стержня

Напряжения в наклонных сечениях

Мы умеем определять нормальные напряжения,возникающие в опасном сечении (поперечном) стержня. Но можем ли мы утверждать, что эти нормальные напряжения самые большие и именно их значения следует использовать для оценки прочности стержня? Касательные напряжения в поперечном сечении не возникают, но возникают ли касательные напряжения в наклонных сечениях?

Необходимо научиться определять напряжения на любых площадках, проходящих через некоторую точку К тела и находить площадки, на которых нормальные и касательные напряжения достигают наибольших значений.

Напряжения в наклонных площадках наблюдаются, если мысленно «разрезать» стержень, растягиваемый силами P, наклонной плоскостью под углом к поперечному сечению (рис. 2.2, а), проходящей через точку K, и отбросить правую часть.

Внешняя нормаль к наклонному сечению будет составлять с осью угол . Действие отброшенной правой части стержня на левую часть заменим внутренними усилиями (рис. 2.2, б). Чтобы левая часть стержня находилась в равновесии, в каждой точке наклонного сечения стержня должно возникнуть продольное противодействующее усилие. Равнодействующая внутренних усилий N равна внешней силе P.

Допустим, внутренние усилия равномерно распределены по площади наклонного сечения . Тогда полное напряжение наклонного сечения в каждой точке будет равно:

где – нормальное напряжение, возникающее в точках (в том числе и в точке К), но в поперечном сечении стержня (рис. 2.1, в).

Разложим полное напряжение в наклонном сечении (p), возникающее в некоторой точке К, на две составляющие – нормальное ( ) и касательное ( ) напряжения (рис. 2.2, г). Они будут равны:

Проследим, как будет меняться каждое из этих напряжений с изменением угла наклона сечения, проходящего через точку К, от нуля до .

При увеличении угла нормальное напряжение в точке К будет постепенно уменьшаться от своего максимального значения ( ) до нуля. Касательное напряжение при этом будет сначала возрастать от нулевого до максимального значения ( ) при , а затем убывать и при угле снова станет равным нулю.

Следовательно, наибольшее нормальное напряжение действительно возникает в точках поперечного сечения стержня. В продольном сечении оно равно нулю. Следовательно, продольные волокна не давят друг на друга.

Наибольшие касательные напряжения возникают в наклонных сечениях, расположенных под углом к оси стержня. В поперечном и продольном сечениях они равны нулю.

Читайте также:  Что лучше электромеханический или релейный стабилизатор напряжения

Источник

СОПРОМАТ ОН-ЛАЙН

Меню сайта

Расчет геометрических характеристик сечений он-лайн NEW — считает любые сечения (сложные). Определяет: площадь сечения, моменты инерции, моменты сопротивления.

Расчет балок на прочность он-лайн — построение эпюр Mx, Qy, нахождение максимального изгибающего момента Mx, максимальной сдвигающей силы Qy, расчет прогибов, подбор профиля и др. Все просто, все он-лайн.
+ Полное расписанное решение!
Теперь и для статически неопределимых балок!

Расчет рам, ферм балок он-лайн NEW — эпюры Q, M, N, перемещения узлов. Удобный графический интерфейс. Считает любые схемы.

Лекции — теория, практика, задачи.

Справочная информация — ГОСТы, сортамент проката, свойства материалов и другое.

Программы по сопромату (построение эпюр, различные калькуляторы, шпоры и другое).

Книги — разная литература по теме.

Базовый курс лекций по сопромату, теория, практика, задачи.

2.2. Определение напряжений в стержнях круглого сечения.

Крутящие моменты, о которых шла речь выше, представляют лишь равнодействующие внутренние усилия. Фактически в поперечном сечении скручиваемого стержня действуют непрерывно распределенные внутренние касательные напряжения, к определению которых теперь и перейдем.

Ознакомимся прежде всего с результатами опытов. Если на поверхность стержня круглого сечения нанести прямоугольную сетку, то после деформации окажется (рис. 2.6):

1) прямоугольная сетка превратится в сетку, состоящую из параллелограммов, что свидетельствует о наличии касательных напряжений в поперечных сечениях бруса, а по закону парности касательных напряжений — и в продольных его сечениях;

2) расстояния между окружностями, например между I и II, не изменятся. Не изменится длина стержня и его диаметр. Естественно допустить, что каждое поперечное сечение поворачивается в своей плоскости на некоторый угол, как жесткое целое (гипотеза плоских и жестких сечений). На основании этой гипотезы можно считать, что радиусы всех поперечных сечений будут поворачиваться (на равные углы), оставаясь прямолинейными.

На основании этого можно принять, что при кручении в поперечных сечениях стержня действуют только касательные напряжения, т.е. напряженное состояние в точках скручиваемого стержня представляет собой чистый сдвиг.

Формулы, полученные на основе этого допущения, подтверждаются опытами. Точка D переместится по дуге DD’, точка C — по меньшей дуге CC’ (рис. 2.7).

Для установления закона распределения касательных напряжений по поперечному сечению скручиваемого стержня рассмотрим более детально деформации стержня (рис. 2.6 и 2.8). На рис. 2.8 в более крупном масштабе изображена часть стержня между сечениями I и II и показана одна сторона KN элемента KLMN (рис. 2.6).

Читайте также:  Что называют рабочим напряжением конденсатора

Угол сдвига для элемента KLMN, лежащего на поверхности стержня, равен отношению отрезка NN’ к длине элемента dz (см. рис. 2.8)

Выделяя мысленно из рассматриваемой части бруса цилиндр произвольного радиуса p и повторяя те же рассуждения, получим угол сдвига для элемента, отстоящего на расстоянии p от оси стержня

на основании закона Гука при сдвиге имеем

Как видим, при кручении деформации сдвига и касательные напряжения прямо пропорциональны расстоянию от центра тяжести сечения.

Эпюра касательных напряжений по поперечному сечению стержня представлена на рис. 2.7 справа.

В центре тяжести круглого сечения касательные напряжения равны нулю. Наибольшие касательные напряжения будут в точах сечения, расположенных у поверхности стержня.

Зная закон распределения касательных напряжений, легко определить их величину из учловия, что крутящий момент в сечении представляет собой равнодействующий момент касательных напряжений в сечении:

где ТрdA — элементарный крутящий момент внутренних сил, действующий по площадке dA.

Подставив в (2.4) значение напряжений из формулы (2.3) получим

где I p — полярный момент инерции сечения, получим

Подставляя значение в формулу (2.3), имеем

В частном случае, когда на стержень действует один внешний скручивающий момент Т (рис. 2.9), из условия равновесия отсеченной части стержня получим Т к = Т.

Таким образом, окончательная формула для определения касательных напряжений при кручении имеет вид

Как видно из этой формулы, в точках, одинаково удаленных от центра сечения, напряжения одинаковы.

Наибольшие напряжения в точках у контура сечения равны

Геометрическая характеристика W p называется полярным моментом сопротивления или моментом сопротивления при кручении.

Для круглого сплошного сечения

Для колцевого сечения

Условие статической прочности вала при кручении имеет вид

Здесь — допускаемое касательное напряжение.

При действии статической нагрузки принимают (без учета концентрации напряжений и других факторов, снижающих прочность)

Кроме проверки прочности, по этой формуле можно также подбирать диаметр вала или определять допускаемыйкрутящий момент при известных остальных величинах.

Имея в виду, что для круглого сплошного сечения , получаем

По этой формуле определяют диаметр вала из условия прочности.

Читайте также:  Вольтметры переменного напряжения показывают значение напряжения

Допускаемый из условия прочности крутящий момент определяют по формуле

Касательные напряжения действуют не только в поперечных сечениях стержня, но и (как это следует из закона парности касательных напряжений) в продольных сечениях (рис. 2.10).

В наклонных же сечениях стержня действуют и нормальные и касательные напряжения. Они могут быть вычислены.

Опыты показывают, что хрупкие материалы, например чугун, при кручении разрушаются по плоскости (говоря точнее, по винтовой поверхности), наклоненной к оси вала под углом 45 градусов (рис. 2.11, б), т.е. по тем плоскостям, где действуют наибольшие растягивающие напряжения.

Следовательно, при кручении во всех точках стержня, кроме точек его оси (в которых вообще не возникает напряжений), имеет место двухосное напряженное состояние — чистый сдвиг. При кручении материал у поверхности стержня напряжен сильнее, чем материал, расположенный, ближе к оси стержня. Таким образом, напряженное состояние является неоднородным. Если же скручивать тонкостенную трубу, то можно считать, что практически во всех точках ее стенки возникают одинаковые напряжения, т.е. в этом случае напряженное состояние будет однородным. Опыты с кручением таких труб используют обычно для изучения чистого сдвига и, в частности, для установления предела текучести при сдвиге .

Источник



ISopromat.ru

Задача

Рассчитать величину напряжений в стержне заданной формы, нагруженном продольными силами и построить их эпюру.

Расчетная схема к задаче

Поперечное сечение стержня — квадрат со сторонами a =22мм.
Допустимые напряжения [ σ ]=160МПа

Пример решения

Предыдущие пункты решения задачи:

Формула расчета напряжений при растяжении-сжатии

т.е. напряжения определяются отношением соответствующей величины внутренней силы к площади поперечного сечения на рассматриваемом участке стержня.

Площади поперечного сечения стержня:

Расчет площадей поперечных сечений стержня

В пределах участка стержня, где внутренняя сила и площадь постоянны, напряжения тоже будут одинаковы, при этом положительные (растягивающие) внутренние силы в сечениях вызывают действие положительных напряжений, и наоборот.

Величину и знаки внутренних сил примем с построенной эпюры N.

Эпюра внутренних сил N

Расчет напряжений

Напряжения на I силовом участке (KM)

Напряжения на первом участке стержня

На II участке (CK)

Напряжения на II участке

На III участке (BC)

Напряжения на III участке

По этим данным строим эпюру нормальных напряжений σ .

Эпюра нормальных напряжений в стержне заданной формы

По эпюре видно, что все напряжения лежат в пределах допустимых значений, следовательно, поперечные размеры стержня были рассчитаны правильно и необходимая прочность обеспечена.

Источник