Меню

Определить энергию конденсатора емкость которого 200 мкф при напряжении 3 кв

Определите энергию электростатического поля конденсатора

Задача. Определите энергию электростатического поля конденсатора электроёмкостью \displaystyle C=0,30мкФ, если напряжение на нём \displaystyle U=100В.

Дано:

\displaystyle C=0,30мкФ
\displaystyle U=100В

Найти:
\displaystyle W— ?

Решение

Думаем: энергию электростатического поля конденсатора при заданных условиях легче представить через (1).

\displaystyle W=\frac<C<<U data-lazy-src=

Задачи на конденсаторы и электроемкость с решениями

Конденсатор – деталька, без которой не обойдется работа ни одного электронного прибора. Но прежде чем разбираться с основами электроники, нужно научиться решать физические задачи на конденсатор и электроемкость. Именно этим мы и займемся в сегодняшней статье, посвященной подробному разбору решений задач.

Подписывайтесь на наш телеграм: теперь помимо полезных и интересных материалов там можно найти скидки и акции на любые работы.

Задачи на конденсаторы и электроемкость с решением

Если вы не знаете, как решать задачи с конденсаторами, сначала посмотрите теорию и вспомните про памятку по решению задач по физике и полезные формулы.

Задача №1 на электроемкость батареи конденсаторов

Условие

Плоский конденсатор емкостью 16 мкФ разрезают на 4 равные части вдоль плоскостей, перпендикулярных обкладкам. Полученные конденсаторы соединяют последовательно. Чему равна емкость батaреи конденсаторов?

Решение

Из условия следует, что площадь получившихся конденсаторов в 4 раза меньше, чем у исходного. Зная это, можно найти емкость каждого полученного конденсатора:

Соединяя 4 таких конденсатора последовательно, получаем:

Ответ: 1 мкФ.

Задача №2 на энергию плоского конденсатора

Условие

Плоский конденсатор заполнили диэлектриком с диэлектрической проницаемостью, равной 2. Энергия конденсатора без диэлектрика равна 20 мкДж. Чему равна энергия конденсатора после заполнения диэлектриком? Считать, что источник питания отключен от конденсатора.

Решение

Энергия конденсатора до заполнения диэлектриком равна:

После заполнения емкость конденсатора изменится:

Энергия конденсатора после заполнения:

Ответ: 40 мкФ.

Задача №3 на последовательное и параллельное соединение конденсаторов

Условие

На рисунке изображена батарея конденсаторов. Каждый конденсатор имеет емкость 1 мкФ. Найдите емкость батареи.

Решение

Как видим, часть конденсаторов соединена параллельно, а часть последовательно. Это типичный пример смешанного соединения конденсаторов. Алгоритм решения задач при смешанном соединении конденсаторов сводится к тому, чтобы упростить схему и свести все только к параллельному или последовательному соединению.

Конденсаторы 3 и 4 соединены параллельно. Складывая их емкость, получаем в итоге последовательное соединение четырех конденсаторов: 1, 2, 5 и 3-4. Для параллельного соединения:

Для последовательного соединения:

Ответ: 0,285 мкФ.

Задача №4 на пролет частицы в конденсаторе

Заряд конденсатора равен 0,3 нКл, а емкость – 10 пФ. Какую скорость приобретет электрон, пролетая в конденсаторе от одной пластины к другой. Начальная скорость электрона равна нулю.

Решение

По закону сохранения энергии, разность кинетических энергий электрона в начале и в конце пути будет равна работе поля по его перемещению. По условию, начальная кинетическая энергия электрона равна 0. Запишем:

С учетом этого, получим:

Ответ: 10^7 м/с.

Задача №5 на вычисление энергии электрического поля конденсатора

Условие

Читайте также:  Косвенное измерение переменного напряжения

Конденсатор подключен к источнику постоянного напряжения U=1 кВ. Емкость конденсатора равна 5 пФ. Как изменяться заряд на обкладках конденсатора и его энергия, если расстояние между обкладками уменьшить в три раза.

Решение

Заряд конденсатора равен:

Изменение заряда будет равно:

Ответ: 5 мкДж.

Вопросы на тему «Конденсатор и электроемкость»

Вопрос 1. Что такое конденсатор?

Ответ. Конденсатор – устройство, имеющее два полюса и предназначенное для накопления электрического заряда.

Простейший тип конденсатора – плоский воздушный конденсатор. Он состоит из двух пластин (обкладок), имеющих разные заряды и разделенных воздухом. В зависимости от диэлектрика, разделяющего обкладки, разделяют:

  • воздушные конденсаторы;
  • бумажные конденсаторы;
  • слюдяные и другие конденсаторы.

Основная роль конденсатора в электронных приборах – накапливать заряд, а потом передавать его дальше в цепь.

Вопрос 2. Что такое электроемкость?

Ответ. Электроемкость – скалярная физическая величина, характеризующая способность накапливать электрический заряд. В системе СИ измеряется в Фарадах.

Вопрос 3. Какие есть способы соединения конденсаторов?

Ответ. Конденсаторы можно соединить последовательно и параллельно.

При параллельном соединении емкость цепи равна сумме емкостей отдельных конденсаторов.

При последовательном соединении величина, обратная общей емкости, равна сумме обратных емкостей каждого конденсатора.

Вопрос 4. Что такое колебательный контур?

Ответ. Это простейшая электрическая цепь, состоящая из конденсатора, катушки индуктивности и источника тока. В колебательном контуре происходят свободные электромагнитные колебания: энергия конденсатора переходит в энергию катушки, и наоборот.

Вопрос 5. Что происходит при отключении источника питания, к которому подключен конденсатор в цепи?

Ответ. В этот момент конденсатор начинает разряжаться, отдавая накопленный заряд другим элементам цепи.

Мы не понасылшке знаем, что от сложных задач на конденсаторы мозги буквально плавятся. Если ваш мозг устал от постоянного решения задач по физике и других заданий, обращайтесь в профессиональный образовательный сервис за консультацией и поддержкой в любое время. У нас есть решение для ваших проблем с учебой!

  • Контрольная работа от 1 дня / от 100 р. Узнать стоимость
  • Дипломная работа от 7 дней / от 7950 р. Узнать стоимость
  • Курсовая работа 5 дней / от 1800 р. Узнать стоимость
  • Реферат от 1 дня / от 700 р. Узнать стоимость

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Источник



§ 99. Примеры решения задач по теме «Электроёмкость. Энергия заряженного конденсатора»

«Электроёмкость» — последняя тема раздела «Электростатика». При решении задач на эту тему могут потребоваться все сведения, полученные при изучении электростатики: закон сохранения электрического заряда, понятия напряжённости поля и потенциала, сведения о поведении проводников в электростатическом поле, о напряжённости поля в диэлектриках, о законе сохранения энергии применительно к электростатическим явлениям. Основной формулой при решении задач на электроёмкость является формула (14.22).

Задача 1. Электроёмкость конденсатора, подключённого к источнику постоянного напряжения U = 1000 В, равна C1 = 5 пФ. Расстояние между его обкладками уменьшили в n = 3 раза. Определите изменение заряда на обкладках конденсатора и энергии электрического поля.

Р е ш е н и е. Согласно формуле (14.22) заряд конденсатора q = CU. Отсюда изменение заряда Δq — (С2 — C)U = (nC1 — C1)U = (п — 1)С1U = 10 -8 Кл.

Читайте также:  Напряжение конденсаторе цепи постоянного тока

Изменение энергии электрического поля

Изменение энергии электрического поля

Задача 2. Заряд конденсатора q = 3 • 10 -8 Кл. Ёмкость конденсатора С = 10 пФ. Определите скорость, которую приобретает электрон, пролетая в конденсаторе путь от одной пластины к другой. Начальная скорость электрона равна нулю. Удельный заряд электрона

Р е ш е н и е. Начальная кинетическая энергия электрона равна нулю, а конечная равна Применим закон сохранения энергии где А — работа электрического поля конденсатора:

Следовательно,

Окончательно

Определите заряд q1 и напряжение U1, на каждом из конденсаторов

Задача 3. Четыре конденсатора ёмкостями С1 = С2 = = 1 мкФ, С3 = 3 мкФ, С4 = 2 мкФ соединены, как показано на рисунке 14.46. К точкам А и В подводится напряжение U = 140 В. Определите заряд q1 и напряжение U1, на каждом из конденсаторов.

Р е ш е н и е. Для определения заряда и напряжения прежде всего найдём ёмкость батареи конденсаторов. Эквивалентная ёмкость второго и третьего конденсаторов С2,3 = С2 + С3, а эквивалентную ёмкость всей батареи конденсаторов, представляющей собой три последовательно соединённых конденсатора ёмкостями С1, С2,3, С4, найдём из соотношения

Заряды на этих конденсаторах одинаковы:

Следовательно, заряд первого конденсатора q1 = 8 • 10 -5 Кл, а разность потенциалов между его обкладками, или напряжение, U1 = q11 = 80 В.

Для четвёртого конденсатора аналогично имеем q4 = 8 • 10 -5 Кл, U4 = q4/C4 = 40 В.

Найдём напряжение на втором и третьем конденсаторах: U2 = U3 = q2,3/C2,3 = 20 В.

Таким образом, на втором конденсаторе заряд q2 = C2U2 = 2 • 10-5 Кл, а на третьем конденсаторе q3 = C3U3 = 6 • 10 -5 Кл. Отметим, что q2,3 = q2 + g3.

Определите эквивалентную электрическую ёмкость в цепи

Задача 4. Определите эквивалентную электрическую ёмкость в цепи, изображённой на рисунке (14.47 а), если ёмкости конденсаторов известны.

Р е ш е н и е. Часто при решении задач, в которых требуется определить эквивалентную электрическую ёмкость, соединение конденсаторов не очевидно. В этом случае если удаётся определить точки цепи, в которых потенциалы равны, то можно соединить эти точки или исключить конденсаторы, присоединённые к этим точкам, так как они не могут накапливать заряд (Δφ = 0) и, следовательно, не играют роли при распределении зарядов.

В приведённой на рисунке (14.47, а) схеме нет очевидного параллельного или последовательного соединения конденсаторов, так как в общем случае φA ≠ φB в и к конденсаторам С1 и С2 приложены разные напряжения. Однако заметим, что в силу симметрии и равенства ёмкостей соответствующих конденсаторов потенциалы точек А и В равны. Следовательно, можно, например, соединить точки А и В. Схема преобразуется к виду, изображённому на рисунке (14.47, б). Тогда конденсаторы С1, так же как и конденсаторы С2, будут соединены параллельно и Сэкв определим по формуле 1/Сэкв = 1/2С1 + 1/2С2, откуда

С<sub data-lazy-src=

Конденсаторы С1 и С2 соединены последовательно

Эквивалентные конденсаторы с С’экв соединены параллельно, так что окончательно получим такое же выражение для эквивалентной ёмкости:

Выражение для эквивалентной ёмкости

Задача 5. Энергия плоского воздушного конденсатора W1 = 2 • 10 -7 Дж. Определите энергию конденсатора после заполнения его диэлектриком с диэлектрической проницаемостью ε = 2, если:

1) конденсатор отключён от источника питания;

2) конденсатор подключён к источнику питания.

Р е ш е н и е. 1) Так как конденсатор отключён от источника питания, то его заряд q остаётся постоянным. Энергия конденсатора до заполнения его диэлектриком после заполнения где С2 = εС1.

Тогда

Задачи для самостоятельного решения

1. Разность потенциалов между обкладками конденсатора ёмкостью 0,1 мкФ изменилась на 175 В. Определите изменение заряда конденсатора.

2. В пространство между пластинами плоского конденсатора влетает электрон со скоростью 2-10 7 м/с, направленной параллельно пластинам конденсатора. На какое расстояние по направлению к положительно заряженной пластине сместится электрон за время движения внутри конденсатора, если длина конденсатора равна 0,05 м и разность потенциалов между пластинами 200 В? Расстояние между пластинами конденсатора равно 0,02 м. Отношение модуля заряда электрона к его массе равно 1,76 • 10 11 Кл/кг.

3. Плоский конденсатор зарядили при помощи источника тока напряжением U = 200 В. Затем конденсатор был отключён от этого источника тока. Каким станет напряжение U1 между пластинами, если расстояние между ними увеличить от первоначального d = 0,2 мм до d1 = 0,7 мм?

4. Определите ёмкость воздушного сферического конденсатора. Радиусы сфер R1 и R2.

5. В плоский воздушный конденсатор вставляется металлическая пластина толщиной d. Заряд на обкладках конденсатора q. Конденсатор отключён от источника. Расстояние между пластинами d, площадь пластин S. Определите изменение ёмкости конденсатора и энергии его электрического поля.

Образцы заданий ЕГЭ

Чему равна разность потенциалов между обкладками конденсатора, если удлинение нити 0,5 мм?

C1. Маленький шарик с зарядом q = 4 • 10 -7 Кл и массой 3 г, подвешенный на невесомой нити с коэффициентом упругости 100 Н/м, находится между вертикальными пластинами воздушного конденсатора (см. рис.). Расстояние между обкладками конденсатора 5 см. Чему равна разность потенциалов между обкладками конденсатора, если удлинение нити 0,5 мм?

C2. В плоский конденсатор длиной L = 5 см влетает электрон под углом а = 15° к пластинам. Энергия электрона W = 2,4 • 10 -16 Дж. Расстояние между пластинами d = 1 см. Определите разность потенциалов между пластинами конденсатора U, при которой электрон на выходе из конденсатора будет двигаться параллельно пластинам. Заряд электрона qe = 1,6 • 10 -19 Кл.

Повторите материал главы 14 по следующему плану

1. Выпишите основные понятия и физические величины и дайте им определение.

2. Сформулируйте законы и запишите основные формулы.

3. Укажите единицы физических величин и их выражение через основные единицы СИ.

4. Опишите основные опыты, подтверждающие справедливость законов.

Статическое электричество»

1. История открытия электричества (Франклин, Гальвани, Вольта и др.).

2. Скалярные и векторные поля. Сравнение электрического поля заряженной сферы и гравитационного поля Земли.

3. Диэлектрики (сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры и т. д.).

4. Статическое электричество. Электризация тел в быту и на производстве. Способы защиты от статического электричества.

Источник