Меню

Определить амплитудное значение падения напряжения

Как рассчитать падение напряжения на резисторах? Показываю на примерах

Простая электрическая цепь состоит из источника питания, проводников и сопротивлений. На практике же электроцепи редко бывают простыми и включают в себя несколько различных ответвлений и повторных соединений.

В больших масштабах в роли сопротивлений может выступать бытовая техника, осветительные приборы и другие потребители. Давайте разберемся, что происходит с током и напряжением на каждом таком потребителе или резисторе с точки зрения электротехники.

Основы электротехники

Закон Ома гласит, что напряжение равно силе тока умноженной на сопротивление. Это может относиться к цепи в целом, участку цепи или к конкретному резистору. Самая распространенная форма этого закона записывается:

Два типа схем в электротехнике

Последовательная цепь

Здесь ток протекает по одному проводнику. Независимо от того, какие сопротивления встречаются на его пути, просто суммируйте их, чтобы получить общее сопротивление цепи в целом:

Rобщй = R1 + R2 + … + RN (последовательная цепь)

Последовательная цепь. Источник: Нарисовал сам

Параллельная цепь

В этом случае проводник разветвляется на два или более других проводника, на каждом из которых имеется своё сопротивление. В этом случае полное сопротивление определяется как:

1/Rобщ = 1/R1 + 1/R2 + … + 1/R N (параллельная цепь)й

Параллельная цепь. Источник: Собственный рисунок

Если взглянуть на эту формулу, можно сделать вывод, что добавляя сопротивления одинаковой величины, вы уменьшаете сопротивление цепи в целом. Согласно закону Ома это фактически увеличивает ток!

Если это кажется нелогичным, представьте себе поток автомобилей, которые выезжают с парковки через один шлагбаум и тот же самый поток который выезжает со стоянки, которая имеет несколько выездов. Несколько выездов явно увеличит поток покидающих стоянку машин.

Падение напряжения в последовательной цепи

Если вы хотите найти падение напряжения на отдельных резисторах в цепи, выполните следующие действия:

  1. Рассчитайте общее сопротивление, сложив отдельные значения R.
  2. Рассчитайте ток в цепи, который одинаков для каждого резистора, поскольку в цепи только один проводник.
  3. Рассчитайте падение напряжения на каждом резисторе, используя закон Ома.

Пример : источник питания 24 В и три резистора подключены последовательно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом. Чему равно падение напряжения на каждом резисторе?

Схема для решения задачи на последовательно подключенное сопротивление. Источник: Собственный рисунок

Падение напряжения в параллельной цепи

Пример : источник питания 24 В и три резистора подключены параллельно, где R1 = 4 Ом, R2 = 2 Ом и R3 = 6 Ом, как и в предыдущей схеме. Чему будет равно падение напряжения на каждом резисторе?

Схема для решения задачи на паралельно подключенное сопротивление. Источник: Собственный рисунок

В этом случае все проще: независимо от значения сопротивления, падение напряжения на каждом резисторе одинаково. Это означает, что падение напряжения на каждом из них — это просто общее напряжение цепи, деленное на количество резисторов в цепи, или 24 В / 3 = 8 В.

Применяя эти несложные правила вы сможете рассчитать падение напряжения даже в сложной цепи, достаточно лишь разделить её на простые участки.

Источник

Действующее, амплитудное, среднее значение величины на синусоиде

Синусоида (синус) — самый наш идеальный и необходимый вариант. Используется на выходе из генераторов для передачи на расстояния и затем используется вами из розетки (какой ток в розетке?). Самый распространенный сигнал, вероятно, если я чего-то не знаю. Рассмотрим основные элементы графика переменного тока:

Читайте также:  Электронная схема реле регулятора напряжения

Период — это время, через которое функция начинает повторяться, величина обратная частоте. Обозначается буквой Т. Т=2тт/w.

тт — так почему-то в интернетах принято обозначать число “пи”, против толпы не попрешь, так сказать, хотя можно просто 3,14 написать или “пи”. Дело вкуса.

Амплитудное значение (амплитуда) — значения, в которых график синусоиды достигает максимумов. То есть для синусоиды таких значения два на период — положительное и отрицательное.

Действующее значение — это 0,707 от амплитудного значения. Есть у нас цепь — в этой цепи за время Т1 постоянный ток определенной величины I1 выделит определенное количество тепла Q1, если в той же цепи пустить переменный ток, то за тоже время Т1 он выделит такое же количества тепла Q1 при действующем значении равном I1. И это значение I1 для синусоиды будет равно 0,707 от амплитудного — что означает единица делить на корень из двух. Если вам интересно, откуда это такое взялось, то плиз велком:

Мгновенное значение — значение величины в определенный момент времени. Если посмотреть на синусоиду, то видно, что мгновенное значение постоянно передвигается и на протяжении одного периода постоянно меняет свои значения. В следующем периоде опять идет тем же путем. Остановись мгновение =) Значение мгновенного значения определяется как Im*sin(wt) — амплитудное значение умноженное на “синус омега тэ” — где “омега тэ” — произведение угловой скорости на момент времени. Омега равно два пи делить на период Т.

Среднее значение — сумма всех мгновенных значений за полпериода. Для синусоиды равно 0,6366197730950255438113531364418

0,637 от амплитудного значения. Если вновь стало интересно, откуда число, то ответ ниже на примере переменного тока:

Если амплитудное значение разделить на действующее значение, то мы получим, правильно корень из двух для синусоиды — его еще называют коэффициентом амплитуды. Если же мы разделим действующее значение на среднее — то получим для синусоиды 1,11 — это отношение называется коэффициентом формы кривой.

Сколько инженеров, столько и форм кривых в электронике, а если серьезно, то существуют например такие: Форма сигнала меандр — сигнал, в котором отсутствуют четные гармоники, имеет прямоугольную форму. В отличие от прямоугольного импульса, у которого длительность сигнала и длительность паузы могут отличаться, у меандра они равны. Сигнал такой формы может встречаться в импульсных источниках бесперебойного питания и прочих электронных схемах, ШИМ.

Пилообразный сигнал — сигнал пилообразной формы может идти и в одну сторону и в другую (знак минус в формуле функции). Для создания этой и других форм сигналов применяются генераторы сигналов. Применяются в старых осциллографах, мониторах, как и треугольные.

Читайте также:  Стабилизатор сетевого напряжения однофазный

Треугольный сигнал — у треугольного сигнала длина роста и длина падения равны.

Каждая из этих форм может быть представлена через преобразование фурье, смысл которого в разбиении функции на гармонические составляющие от единицы до бесконечности с набором определенных гармоник — нечетных например, как для меандра. В функциях выше, которые были построены в маткаде, смысл построения в следующем, чем больше составляющих вы берете для построения (ближе к бесконечности), тем красивее получается график.

Вы находитесь на странице, адап­ти­ро­ван­ной для быстрой загрузки

Источник



Переменный электрический ток

Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.

Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.

DC — Direct Current — постоянный ток, не меняющий своей величины и направления.

В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.

При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.

Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.

Термины AC и DC применимы как для тока, так и для напряжения.

Параметры переменного тока и напряжения

Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:

Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.

Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz)

f = 1 /T

Циклическая частота ω — угловая частота, равная количеству периодов за секунд.

Читайте также:  Формула для расчета напряжения при параллельном соединении

ω = 2πf = 2π/T

Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°

Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.

Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.

Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.

i = i(t); u = u(t)

Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:

i = I ampsin(ωt); u = U ampsin(ωt)

С учётом начальной фазы:

i = I ampsin(ωt + ψ); u = U ampsin(ωt + ψ)

Здесь I amp и U amp — амплитудные значения тока и напряжения.

Амплитудное значение — максимальное по модулю мгновенное значение за период.

I amp = max|i(t)|; U amp = max|u(t)|

Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.

Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.

Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.

Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.

Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.

Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.

Для синусоидального тока и напряжения амплитудой I amp (U amp) среднеквадратичное значение определится из расчёта:

Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.

Коэффициент амплитуды и коэффициент формы

Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.

Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1

Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1

Замечания и предложения принимаются и приветствуются!

Источник