Меню

Напряжение между точками переменное напряжение

Что такое напряжение

Содержание

  1. Напряжение с точки зрения гидравлики
  2. Электрическое напряжение
  3. Формула напряжения
  4. Напряжение тока – что это означает?
  5. Постоянное и переменное напряжение
  6. Осциллограммы постоянного и переменного напряжения

Что такое напряжение в электронике и электротехнике? Как его можно трактовать? Обо всем этом мы как раз и поговорим в нашей статье.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил, давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Электрическое напряжение

Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком “минус”. Можно даже сказать, что уровень “воды в башне” у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

Электрическое напряжение – это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.

Читайте также:  Измерительный вход по напряжению

С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп – черным или синим.

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – ноль.

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Формула напряжения

В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.

A – это работа электрического поля по перемещению заряда по участку цепи, Джоули

U – напряжение на участке электрической цепи, Вольты

На практике напряжение на участке цепи выводится через закон Ома.

Напряжение тока – что это означает?

Этот термин очень часто можно услышать в разговорной речи. Ток, в данном случае, это электрический ток. Получается, напряжение тока – это напряжение электрического тока. Просто у нас так сокращают. Как я уже говорил выше, ток бывает переменным и постоянным. Постоянный ток и постоянное напряжение – это синонимы, как и переменный ток и переменное напряжение. Получается фраза “напряжение тока” говорит нам о том, какое напряжение между двумя точками или проводами в электрической цепи.

Например, на вопрос “какое напряжение тока в розетке” вы можете смело ответить: переменный ток 220 Вольт”, а на вопрос “какое напряжение тока тока у автомобильного аккумулятора”, вы можете ответить “12 Вольт постоянного тока”. Так что не стоит пугаться).

Постоянное и переменное напряжение

Напряжение бывает бывает постоянным и переменным. В разговорной речи часто можно услышать “постоянный ток” и “переменный ток. Постоянный ток и постоянное напряжение – это синонимы, то же что и переменный ток и переменное напряжение.

На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала “электрическое давление” давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки “Первые шаги в электронике” Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

Читайте также:  Формула общего напряжения для схемы соединения резисторов

Так же ведут себя и электроны. В вашей домашней сети 220 В они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто “Гц”. Тогда получается, что колебание напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях. В разговорной речи постоянное напряжение называют “постоянкой”, а переменное – “переменкой”.

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y – это значение напряжения, а ось Х – это время.

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения – это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.

Про параметры переменного напряжения можете прочитать в этой статье.

Также отличное объяснение темы можно посмотреть в этом видео.

Источник

Напряжение между точками переменное напряжение

Все мы знаем, что дома в розетках у нас напряжение 220В. Но не каждый знает, какое именно это напряжение. Давайте же разберемся с этой ситуацией.

Для упрощения рассматриваемого примера будем считать, что вид напряжения – синусоида, то есть переменное напряжение (с определенной периодичностью меняет значение с положительного на отрицательное).

Рисунок 1 – Вид переменного напряжения

На рисунке 1 изображен вид идеального синусоидального напряжения одного периода Т. Есть несколько значений напряжения, о которых обычно говорят и используют, рассмотрим:

Амплитудное значение напряжения (U m ) – это максимальное, мгновенное значение напряжения, то есть амплитуда синусоиды.

Теперь правильнее будет говорить о токе.

Действующее значение переменного тока — это величина постоянного тока, который может выполнить ту же самую работу (нагрев).

Действующее значение напряжения (U) обозначают латинской буквой без индекса, в литературе может еще использоваться термин – эффективное значение напряжения .

Для периодически изменяющегося сигнала за период Т, величина действующего напряжения находится:

Приведем формулу к простому виду, приняв за изменяющийся сигнал синусоиду. Между рассмотренными выше двумя параметрами существует зависимость, которая выражается формулой:

То есть амплитудное значение в 1,414 раза больше действующего.

Вернемся к домашним розеткам с напряжением 220В. Это действующее значение напряжения, которое можно измерить тестером. Определим его амплитудное значение напряжения:

Среднее значение синусоидального тока, напряжения будет равно нулю. Поэтому если говорят о среднем значении переменного тока, то подразумевают рассматривание его в пол периода.

Комментарии

Рисунок один показывает идеальный вид напряжения в сети. Оно описывается мгновенными значениями. Um — это амплитуда (максимальное мгновенное значение). Но работу в электрических приборах выполняет действующее (эффективное) значение, величина которого находится по формуле, приведенной в статье. Я только что вывел примерную функцию, которая описывает вид напряжения, вот график:

Читайте также:  Циклы изменения напряжений коэффициенты асимметрии цикла

Теперь подставим полученное в формулу расчета действующего значения:

Из формулы видно, что по функции находится интеграл, то есть площадь, и здесь не важно, какой знак (+ или -) у напряжения.
В сети есть «Фаза» и «Ноль», первое имеет положительный потенциал относительно земли, то есть имеет место напряжение в 220В, а ноль — просто «провод», пока Вы не вставите в розетку прибор, по нему не будет протекать ток. Вставили прибор в розетку: ток течет от фазы через прибор к нолю.
Проверяете индикатором, «постоянно светит» потому что работу выполняет действующее значение. Установите диод перед индикатором, будет работать только пол волны и заметите мерцание.

Источник



ОПРЕДЕЛЕНИЕ НАПРЯЖЕНИЯ МЕЖДУ ДВУМЯ ТОЧКАМИ ЭЛЕКТРИЧЕСКОЙ ЦЕПИ

Эта задача при расчете электрических цепей встречается очень часто. Пусть, например, в цепи на рис. 2.1 требуется найти напряжение между точками m и n.

Прежде всего необходимо показать на схеме или мысленно представить стрелку этого напряжения. Её направление определяется порядком следования индексов у буквы . Для напряжения она направлена отточки m к точке n. Если мы меняем местами индексы у буквы , то следует изменить и направление стрелки на схеме. При этом при расчете меняется знак полученного напряжения, так как .

Дальше записываются уравнения по второму закону Кирхгофа для любого контура, включающего в себя эту стрелку, как было сделано при расчете напряжений и . Так, для контура m31 nm при обходе его по часовой стрелке

При соответствующем навыке последняя формула может быть записана сразу, без составления уравнения второго закона Кирхгофа.

В указанном контуре напряжение складывается из трех напряжений:

Порядок индексов у букв U соответствует порядку, в котором мы проходим участок электрической цепи, идя от точки m к точке n по элементам , и .

Теперь находим значение каждого слагаемого в последнем уравнении.

Величина , определяющая напряжение между точками m и 3, представляет собой падение напряжения на сопротивлении , которое мы должны взять со знаком минус, так как от точки m к точке 3 мы идем против тока :

Здесь в правой части уравнения стоит плюс, так как мысленная стрелка напряжения и ток направлены в одну сторону.

Третье слагаемое представляет собой напряжение на зажимах источника. Если внутреннее сопротивление последнего равно нулю, то это напряжение по величине равно ЭДС, а знак его зависит от взаимного направления стрелок напряжения и ЭДС (рис. 7.1).

Рис. 7.1. Напряжение на зажимах источника

Рассмотрим рис. 7.1.

При указанной на схеме полярности зажимов источника потенциал точки b выше потенциала точки a на величину ЭДС:

Поэтому при одинаковых направлениях стрелок и (рис. 7.1, а)

Если направления стрелок и противоположны друг другу
(рис. 7.1, б), то

С учетом сказанного напряжение на участке 1 n (см. рис. 2.1) равно

Подставляя найденные значения напряжений на участках в формулу (7.2), приходим к выражению (7.1).

То же самое напряжение, определяемое по участку m2 n, будет равно

Разумеется, вычисление одного и того же напряжения по двум различным формулам должно привести к одинаковым результатам.

Источник