Меню

Мощные выходные каскады усилителей мощности

3.4. Выходные каскады

Задачей выходных каскадов является обеспечение заданной мощности в нагрузке. Коэффициент усиления напряжения является для выходных каскадов второстепенным параметром; -для них наиболее важными являются коэффициент полезного действия и коэффициент нелинейных искажений при обеспечении заданной мощности.

Выходные каскады обычно потребляют основную часть мощности усилителя, поэтому высокий КПД имеет существенное значение. Это особенно важно для интегральных схем, в которых мощность, рассеиваемая кристаллом, ограничена. Что касается коэффициента нелинейных искажений, то для выходных каскадов он имеет немаловажное значение, поскольку в таких каскадах усиливаемые сигналы максимальны.

Коэффициент полезного действия определяется как отношение выходной мощности каскада к мощности, отбираемой от источника питания Ucc: КПД=и„1„,/2и„1,р, где U„,, !„ — амплитуды выходного тока и напряжения; Icp — среднее значение потребляемого каскадом тока.

Коэффициент нелинейных искажений характеризует отличие формы выходного сигнала от формы входного, что обусловлено нелинейностью передаточной характеристики каскада. Нелинейные искажения характеризуются появлением в выходном сигнале новых гармоник, отсутствующих во входном сигнале. Характеристикой нелинейных искажений является отношение суммарной мощности высших гармоник, начиная со второй, к мощности первой гармоники (на частоте входного сигнала).

Допустимое значение коэффициента нелинейных искажений определяется конкретными требованиями к той или иной аппаратуре. Например, при воспроизведении звука в аппаратуре среднего качества допускаются искажения 2. 3%, в измерительных устройствах и усилителях высокого класса его значения существенно меньше.

Как отмечалось выше, имеется несколько типов режимов работы выходных каскадов.

Класс А характеризуется минимальными нелинейными искажениями и малым КПД. Класс В характеризуется тем, что рабочая точка в режиме покоя расположена на границе квазилинейного участка, которая соответствует запертому состоянию транзистора. Очевидно, что в этом случае усиливаются только положительные полуволны входного сигнала. Поэтому выходное напряжение оказывается существенно несинусоидальным, т.е. содержит большое число гармоник. Анализ показывает, что коэффициент нелинейных искажений в классе В независимо от амплитуды сигнала составляет около 70%, что в большинстве случаях неприемлемо. Режим класса В реализуется в так называемой двухтактной схеме, состоящей по существу из двух усилителей, один из которых усиливает положительную полуволну сигнала, а другой — отрицательную. В нагрузке эти полуволны складываются и образуют полную синусоиду.

На рис. 7.13, а показана наиболее простая двухтактная схема класса В, выполненная на коплементарных транзисторах (транзисторах разной проводимости). Нагрузка Rn включена в эмиттерную цепь транзисторов, работающих в режиме повторителей напряжения. В режиме покоя оба транзистора заперты, поскольку напряжения на эмиттерных переходах равны нулю. Во время положительной полуволны входного сигнала Ui открывается транзистор VT1, а во время отрицательной полуволны — транзистор VT2. Коэффициент усиления мощности близок к отношению эмиттерного и базового токов, т.е. равен В+1.

При очевидной простоте схемы на рис. 7.13, а ей свойственны сравнительно большие нелинейные искажения, что связано с наличием так называемой «пятки» на входной ВАХ биполярных транзисторов. Очевидно, что такие искажения будут особенно существенны при малых входных сигналах с амплитудой, сравнимой с напряжением база—эмиттер в рабочей точке. Для устранения этого недостатка используют раздельные схемы подачи смещения на базы транзисторов (рис. 7.13, б), что обеспечивает режим класса АВ.

При построении выходного каскада на однотипных транзисторах используется схема на рис. 7.13, в. В ней транзистор VT2 открыт в течение обоих полупериодов. В режиме покоя ток транзистора выбирается так, чтобы потенциал коллектора VT2 был равен нулю. При этом диод VD и транзистор VT1 заперты; ток в нагрузке отсутствует. Во время положительной полуволны входного сигнала потенциал коллектора VT2 уменьшается, при этом открывается диод VD и через нагрузку начинает протекать ток. Транзистор VT1 остается закрытым, так как прямое напряжение Е на диоде создает на эмиттерном переходе обратное смещение. Во время отрицательной полуволны потенциал коллектора VT2 повышается, отпирается транзистор VT1 и через нагрузку протекает ток, обусловленный транзистором VT1. При этом диод заперт, так как прямое напряжение Е на эмиттерном переходе создает на диоде обратное смещение.

Для того чтобы открылся диод VD (при положительной полуволне) или транзистор VT1 (при отрицательной полуволне), потенциал коллектора VT2 должен измениться на величину ±Е (напряжение база—эмиттер в статическом режиме) по сравнению с потенциалом покоя. Следовательно, минимальная амплитуда входного сигнала, на которую реагирует рассматриваемый каскад, составляет Е/К, где К — коэффициент усиления каскада на транзисторе VT2. Для исследования каскада на рис. 7.13, в используется схема на рис. 7.14.

2-7-45.jpg

2-7-46.jpg

Рис. 7.14. Схема для исследования выходного каскада

2-7-47.jpg

Рис. 7.15. Выходной двухтактный каскад с однополярным питанием

Возможны и другие схемы выполнения выходных каскадов, в том числе и с однополярным питанием. Одна из них приведена на рис. 7.15. Ее особенностью является то, что конденсатор Ск, включенный последовательно с нагрузкой Rn, после его зарядки до напряжения Е, равного напряжению на эмиттерах транзисторов в статическом режиме, работает в течение одного из полупериодов как источник питания.

В мощных выходных каскадах на базе эмиттерных повторителей короткое замыкание на выходе, как правило, приводит к выходу транзисторов из строя из-за превышения коллекторным током допустимого значения. Для защиты от коротких замыканий в эмиттерные цепи мощных выходных транзисторов включают небольшие ограничивающие ток сопротивления (несколько ом) или вводят дополнительные транзисторы, которые открываются только при больших токах нагрузки и, шунтируя входную цепь, ограничивают выходной ток на безопасном уровне. Одна из возможных схем защиты с помощью дополнительных транзисторов показана на рис. 7.16.

2-7-48.jpg

Рис. 7.16. Выходной каскад с защитой от коротких замыканий

Читайте также:  Модуляция мощности газовой колонки что это такое

Схема защиты работает следующим образом. При коротком замыкании в нагрузке ток через сопротивление Ro увеличивается и создает падение напряжения, открывающее в соответствующие полупериоды транзисторы VT5, VT6. Оказываясь в режиме насыщения, они шунтируют входную цепь мощного усилительного каскада. В итоге входное напряжение ограничивается сопротивлением Ri и токи транзисторов VT3, VT4 не превышают значений, при которых они работают в номинальном режиме. Подобная защита имеет высокое быстродействие и обеспечивает надежную работу мощных усилительных каскадов. При ее введении обязательно наличие дополнительного резистора Ri, сопротивление которого выбирается, исходя из минимально допустимого значения сопротивления нагрузки предварительного усилителя, к которому подключается выходной каскад.

1. Путем подбора сопротивления RI в схеме на рис. 7.14 установите зафиксированный приборами статический режим при R2=Rn=100 Ом. Определите коэффициент усиления каскада и максимальный входной сигнал, при котором он передается на выход без искажений (определяется визуально).

2. Составьте схему исследования выходного каскада (рис. 7.15) и проведите ее моделирование.

Источник

Мощные выходные каскады усилителей мощности

СХЕМОТЕХНИКА ВЫХОДНЫХ КАСКАДОВ УСИЛИТЕЛЕЙ МОЩНОСТИ

Выходные каскады на базе » двоек «

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением ( от 100 Ом до 10,1 кОм ) с шагом 2 кОм ( рис . 3 ). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм ) мы в какой — то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС , а в другом (100 Ом ) — к схеме с замкнутой ООС .

Основные типы составных биполярных транзисторов ( БТ ) показаны на рис . 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона ( рис . 4 а ) на базе двух транзисторов одной проводимости (» двойка » Дарлингтона ), реже — составной транзистор Шиклаи ( рис . 4б ) из двух транзисторов разной проводимости с токовой отрицательной ОС , и еще реже — составной транзистор Брайстона ( Bryston , рис . 4 в ).
» Алмазный » транзистор — разновидность составного транзистора Шиклаи — показан на рис . 4 г . В отличие от транзистора Шиклаи , в этом транзисторе благодаря » токовому зеркалу » ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков . Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 ( рис . 4 д ). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах ( ПТ ).

1.1. Выходные каскады на базе » двоек «. » Двойка » — это двухтактный выходной каскад с транзисторами , включенными по схеме Дарлингтона , Шиклаи или их комбинации ( квазикомлементарный каскад , Bryston и др .). Типовой двухтактный выходной каскад на » двойке » Дарлингтона показан на рис . 5. Если эмиттерные резисторы R3, R4 ( рис . 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания , то эти транзисторы будут работать без отсечки тока , т . е . в режиме класса А .

Посмотрим , что даст спаривание выходных транзисторов для двойки » Дарлингт она ( рис . 13).

Менее популярна в ВК схема Шиклаи ( рис . 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады , когда верхнее плечо выполнялось по схеме Дарлингтона , а нижнее — по схеме Шиклаи . Однако в первоначальной версии входное сопротивление плеч ВК несимметрично , что приводит к дополнительным искажениям . Модифицированный вариант такого ВК с диодом Баксандалла , в качестве которого использован базо — эмиттерный переход транзистора VT 3, показан на рис . 20.

Кроме рассмотренных » двоек «, есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости , а коллекторным током — транзисторами другой проводимости ( рис . 22). Аналогичный каскад может быть реализован и на полевых транзисторах , например , Lateral MOSFET ( рис . 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах ( рис . 30).

Из рассмотренных » двоек » наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи . Посмотрим , что может дать для такого каскада применение буфера . Если вместо одного буфера использовать два на транзисторах разной проводимости , включенных параллельно ( рис . 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления . Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами . Посмотрим , что даст установка параллельного буфера на ее входе ( рис . 37 ).

Анализ таблицы позволяет сделать следующие выводы :
— любой ВК из » двоек » на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности ;
— характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала ;
— буферный каскад на входе любой из » двоек » на БТ повышает входное сопротивление , снижает индуктивную составляющую выхода , расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала ;
— ВК Шиклаи с ПТ на выходе и параллельным буфером на входе ( рис . 37 ) имеет самые высокие характеристики ( минимальные искажения , максимальную полосу пропускания , нулевую девиацию фазы в звуковом диапазоне ).

Выходные каскады на базе » троек «

В высококачественных УМЗЧ чаще используются трехкаскадные структуры : » тройки » Дарлингтона , Шиклаи с выходными транзисторами Дарлинг тона , Шиклаи с выходными транзис торами Bryston и другие комбинации . Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов ( рис . 39). На рис . 41 показан ВК с разветвлением каскадов : входные повторители одновременно работают на два каскада , которые , в свою очередь , также работают на два каскада каждый , а третья ступень включена на общий выход . В результате , на выходе такого ВК работают счетверенные транзисторы .

Читайте также:  Терморегулятор с плавным изменением мощности

Схема ВК , в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона , изображена на рис . 43. Параметры ВК на рис .43 можно существенно улучшить , если включить на его входе хорошо зарекомендовавший себя с » двойками » параллельный буферный каскад ( рис . 44).

Вариант ВК Шиклаи по схеме на рис . 4 г с применением составных транзисторов Bryston показан на рис . 46 . На рис . 48 показан вариан т ВК на транзисторах Шиклаи ( рис .4 д ) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А ( цепи термоста билизации не показаны ).

С целью устранения отмеченных выше недостатков схемы рис. 54 и упрощения схемы заменим входной эмиттерный повторитель параллельным повторителем , а резисторы R 1 ( рис . 53) разобьем на 2 резистора ( рис . 55). В точки соединения резисторов ( R 5, R 8 и R 6, R 9) подключим генераторы тока (9 мА ) н а транзисторах VT 1, VT 4. и получим схему изображенную на рисунке .

По вышению надежности усилите лей за счет исключения сквозных то ков , которые особенно опасны при кли пировании высокочастотных сиг налов , способствуют схемы антинасыщения выходных транзисторов . Варианты таких решений показаны на рис . 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия . На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5. 1,5 В , что примерно совпадает с падением напряжения на базо-эмиттерном переходе . В первом варианте ( рис . 58 а ) за счет дополнительного диода в цепи базы напряжение эмитте р — коллектор не доходит до напряжения насыщения пример но на 0,6 В ( падение напряжения на диоде ). Вторая схема ( рис . 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах . Аналогичные решения применяются и в силовых ключах .

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное , на 10. 15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада . В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды . Рассмотрим этот вариант на примере модификации схемы на рис . 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 ( рис . 59 ), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов . При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Ранее , с целью упрощения , вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения . Многие из рассмотренных схем , в частности , выходные каскады с параллельным повторителем на входе , не нуждаются в схемах смещения , что является их дополнительным достоинством . Теперь рассмотрим типовые схе мы смещения , которые представлены на рис . 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем : диф ференциальный каскад ( ДК ), отражатель тока (» токовое зеркало «), схема сдвига уровня , каскод ( с последова тельным и параллельным питанием , последний также называют » лома ным каскодом «), генератор стабильного тока ( ГСТ ) и др . Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ . Оценку параметров основных схем ГСТ ( рис. 62 — 6 6 ) сделаем с помощью моделирования . Будем исходить из того , что ГСТ является нагрузкой УН и включенпараллельно ВК . Исследуем его свойства с помощью методики , аналогичной исследованиям ВК .

Рассмотренные схемы ГСТ — , это вариант динамической нагрузки для однотактного УН . В УМЗЧ с одним дифференциальным каскадом ( ДК ) для организации встречной динамической нагрузки в УН используют структуру » токового зеркала » или , как его еще называют , » отражателя тока » ( ОТ ). Эта структура УМЗЧ была характерна для усилителей Холтона , Хафлера и др . Основные схемы отражателей тока приведены на рис . 67 . Они могут быть как с единичным коэффициентом передачи ( точнее , близким к 1), так и с большим или меньшим единицы ( масштабные отражатели тока ). В усилителе напряжения ток ОТ находится в пределах 3. 20 мА : Поэтому испытаем все ОТ при токе , например , около 10 мА по схеме рис . 68.

Результаты испытаний приве дены в табл . 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 — 7; № 2, с. 5 — 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности , пригодного как для озвучивания » пространства » во время прадничных мероприятий , так и для дискотек . Конечно , хотелось , чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался . Еще одно требование к нему — легкодоступность комплектующих . Стремясь достичь качества Hi — Fi , я выбрал комплементарно — симметричную схему выходного каскада . Максимальная выходная мощность усилителя была задана на уровне 300 Вт ( на нагрузке 4 Ом ). При таком мощности выходное напряжение составляет примерно 35 В . Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2×60 В . Схема усилителя приведена на рис . 1 . УМЗЧ имеет асимметричный вход . Входной каскад образуют два дифференциальных усилителя .

Читайте также:  Индекс мощности шаповаловой рассчитать

А. ПЕТРОВ , Радиомир, 201 1 , №№ 4 — 12

Источник



Схемотехника выходных каскадов усилителей мощности на транзисторах.

На заметку разработчику — Двухтактные и однотактные выходные каскады УМЗЧ
на биполярных и полевых транзисторах.

Выходные каскады транзисторных усилителей мощности могут быть реализованы в соответствии с несколькими схемотехническими решениями. Давайте рассмотрим наиболее распространённые из них, а также порассуждаем об основных плюсах и минусах того или иного построения.

1. Выходные каскады на биполярных транзисторах.

Каскад ОЭ-ОК на 3-ёх транзисторах одной структуры (Рис.1, слева), по большому счёту, можно исключить из рассмотрения по причине некоторой его архаичности. Подобная схемотехника выходных каскадов УНЧ применялась достаточно широко, но давно, и имела смысл лишь в условиях полного отсутствия либо дефицита мощных комплементарных транзисторов.
По своим характеристикам и свойствам данный тип выходных каскадов практически полностью аналогичен двухтранзисторному построению ОЭ-ОЭ (Рис.1, 2-ой слева).

Одним из главных преимуществ перед выходным каскадом ОК-ОК является то, что конфигурация ОЭ-ОЭ обладает усилительными свойствами не только по току, но и по напряжению, что снижает требования к предшествующим каскадам усиления и, как следствие, упрощает схемотехнику УМЗЧ. Источники тока в базовых цепях задают коллекторный ток покоя транзисторов. При положительной полуволне входного сигнала в усилении участвует нижний транзистор T2, который приоткрывается и тянет уровень выходного сигнала вниз (к минусу), а верхний транзистор T1 наоборот подзапирается. При отрицательной полуволне сигнала поведение транзисторов обратное.
Легко заметить, что данный выходной каскад (ОЭ-ОЭ) является инвертирующим, а его коэффициент усиления как по току, так и по напряжению определяется исключительно параметрами применяемых транзисторов и сопротивлением нагрузки.

Выходной каскад ОК-ОК (Рис.1, 3-ий слева) является неинвертирующим и осуществляет усиление сигнала только по току. Здесь при положительной полуволне сигнала в усилении участвует, на этот раз, верхний транзистор T1, а транзистор T2 закрывается. При отрицательной полуволне сигнала опять-таки — поведение транзисторов обратное.

Режимы работы усилительных элементов в перечисленных выше каскадах выбираются: A либо B, но чаще — AB.

Однотактный выходной каскад с трансформаторным включением нагрузки (Рис.1, справа) в современной транзисторном УНЧ-строении применяется крайне редко. Поэтому — не будем тратить на него своё драгоценное время, а сразу перейдём к сравнительному анализу двухтактных схем ОЭ-ОЭ и ОК-ОК.
А, учитывая то, что в последнее время биполярные транзисторы в НЧ усилителях также потеряли практическую актуальность и почти полностью уступили свои позиции полевикам, то и рассматривать мы будем каскады, построенные на мощных комплементарных полевых транзисторах.

1. Выходные каскады на полевых транзисторах.

На Рис.2 слева приведён каскад ОИ-ОИ (аналог выходного каскада ОЭ-ОЭ), посередине — ОС-ОС (аналог ОК-ОК), справа — однотактный каскад ОИ с источником тока в цепи нагрузки, главным идеологом которого является руководитель лаборатории «Pass Labs» Нельсон Пасс.

Наиболее часто используемой схемой при построении выходного каскада УМЗЧ является схема ОС-ОС.
А почему, собственно? Ведь мы помним, что данное построение осуществляет усиление сигнала только по току и имеет единичное усиление по напряжению, в отличие, скажем, от схемы ОИ-ОИ.
Для того, чтобы разобраться в этом вопросе — уровняем условия работы каскадов и переведём их посредством внешних цепей в состояние единичного Кu.

Далее измерим коэффициент нелинейных искажений двухтактных каскадов при выходной мощности 25Вт. Получаем следующие результаты:
1. Каскад ОИ-ОИ Кг = 1,3%,
2. Каскад ОС-ОС Кг = 0,9%.

Казалось бы — вот оно объяснение выбора большинства разработчиков. Однако торопиться не надо. Мы же читали статью (ссылка на страницу) и помним, что не столь важен общий коэффициент нелинейных искажений УНЧ (в ламповых Hi-End системах он составляет довольно значительную величину), сколь спектр гармоник этих искажений.
«Покажите мне график зависимости коэффициента искажений от частоты, и я скажу, как будет звучать усилитель», — написал Владимир Ламм, основатель и идеолог американской компании, занимающейся разработкой и выпуском звукового оборудования «Lamm Industries».
Ну что ж, давайте посмотрим на спектр гармоник:

На рисунке синим цветом изображён спектр гармоник каскада ОС-ОС (при подаче сигнала частотой 1кГц), красным — каскада ОИ-ОИ. Что мы имеем в сухом остатке?
1. Каскад ОС-ОС. Наибольший уровень имеет 2-ая гармоника, однако и 3-яя, вносящая наибольший диссонанс в звучание усилителя, хотя (в отличие от аналога на биполярниках) и меньше 2-ой, но всё равно — имеет значительную величину.
2. Каскад ОИ-ОИ, хоть изначально и имеет более высокое значение Кг, определяемое в значительной степени амплитудой 2-ой гармоники, однако уровень 3-ей — не только значительно меньше, чем у 2-ой, но и имеет более низкую величину, чем у каскада ОС-ОС.
К тому же возможность получить от данного каскада усиление не только по току, но и по напряжению позволяет ограничиться всего одним дополнительным каскадом усиления, охваченным вместе с оконечником общей цепью ООС, что с одной стороны, упрощает схему, а с другой, позволяет проще избавиться от пресловутого эффекта «транзисторного звучания».

Что касается однотактника Нельсона Пасса (Рис.2, справа), то здесь вообще всё очень красиво: 3-яя гармоника на 16дБ ниже 2-ой, 4-ая — ещё на 10дБ ниже, все остальные — находятся на уровне шумов и в учёт могут не приниматься. Всё в лучших традициях однотактных ламповых конструкций!

Источник