Меню

Мощность оптического сигнала измеряется

Измерение оптической мощности в FTTx и PON

Оптическая мощность, или мощность оптического излучения – это основополагающий параметр оптического сигнала. Она выражается в Ваттах (Вт), милливаттах (мВт), микроваттах (мкВт). А также логарифмических единицах – дБм.

Для измерения уровня оптической мощности используются специальные измерительные приборы – измерители оптической мощности. Методика измерений мощности в классических оптических сетях (построенных по топологии “точка-точка”) и сетях PON существенно отличаются, что приводит к применению различных по принципу действия измерительных приборов.

Измерение мощности в сетях FTTx

Для измерения уровня мощности сигнала в таких сетях применяются стандартные измерители мощности с одним входом. Для того чтобы провести измерение, необходимо:

  1. подключить к измерителю оптическую линию (перед подключением рекомендуется провести чистку патч корда и адаптера прибора при помощи специальных приспособлений)
  2. включить измеритель мощности
  3. в меню прибора выбрать длину волны, на которой будем проводить измерения
  4. считать показания прибора. Чаще всего результаты измерения отображаются в дБм, но некоторые измерители позволяют выводить данные и в мВт или мкВт.

Рисунок 1 – подключение прибора при измерении мощности в сетях FTTx

Измерение оптической мощности в PON сети

В связи с тем, что в PON сети от оператора к абонентам передается одновременно информация на двух длинах волн (1490 нм и 1550 нм), то измерить мощность сигнала на каждой из них возможно только по очереди и с применением дополнительных фильтров, что не всегда удобно. Кроме того, обратный канал (от абонентов к оператору) построен по принципу временного разделения каналов и оборудование каждого из абонентов работает только малую часть времени. (Принцип передачи информации в PON сети описано подробно в статье). В результате, если попытаться измерить мощность, передаваемую от абонента к оператору PON сети, при помощи стандартного измерителя (как на рис 1), то получим значение, указанное в столбце Std PM таблицы на рисунке 2

Рисунок 2 – сравнение результатов измерений оптической мощности на длине волны 1310 нм в PON сети при помощи стандартного и специализированного измерителей мощности

Обратите внимание на различия в результатах измерения стандартным и специализированным измерителем. Ошибка измерений стандартного измерителя вызвана тем, что он выдает среднее значение мощности за период измерений, вместе с тем как специализированный прибор измеряет мощность только в момент, когда абонентское оборудование активно и идет передача информации.

Специализированный измеритель мощности в PON сетях включается в разрыв, как показано на рисунке 3.

Рисунок 3 – способ подключения измерителя мощности PON

В отличии от стандартного измерителя, измеритель PON отображает одновременно уровни всех проходящих через него сигналов: на длине волны 1310 нм; 1490 нм; 1550 нм. Вместе с тем, многие измерители PON имеют также возможность установки пороговых значений, в результате чего тестер кроме числового значения будет делать вывод в виде “ПРОШЕЛ/НЕ ПРОШЕЛ”.

Рисунок 4 – результаты измерений измерителя мощности PON

Поэтому, при проведении измерения мощности сигналов в PON сети рекомендуется:

  1. предварительно установить пороговые значения уровней
  2. включить измеритель мощности
  3. подключить его в разрыв со стороны абонента, как показано на рисунке 2. П еред подключением рекомендуется провести чистку патч корда и адаптера прибора при помощи специальных приспособлений.
  4. считать или занести в память результаты измерений. Как и в предыдущем случае, основной единицей измерения уровня мощности является дБм.

Вебинар на тему “Методики измерения параметров ВОЛС”

Источник

2.1.1 Основные единицы измерения в телекоммуникации

Диапазон измеряемых величин.

В телекоммуникациях используется большое число различных физических величин, характеризующих, например, сигнал.
Это частота, длина волны, напряжение, мощность и др.

Таблица 2.1

Наименование Обозначение Множитель
Пико п 10 -12
Нано Н 10 -9
Микро мк 10 -6
Милли м 10 -3
Кило к 10 3
Мега М 10 6
Гига Г 10 9
Тера Т 10 12

Особенность этих физических величин состоит в их большом диапазоне значений; так, длина электромагнитной волны может меняться от сотен километров до сотен нанометров (оптический диапазон), мощность — от мегаватт до нановатт, а частота — от единиц герц до терагерц. В таблице даны значения приставок единиц измерения, которые надо хорошо усвоить. Это поможет вам в сравнении физических величин, умении оценивать физическую реализуемость результатов расчетов и экспериментов.

Понятие децибел. Очень важной величиной, которая используется как в волоконной оптике, так и в электронике для выражения усиления или затухания в системе в целом или в ее компонентах, является децибел (дБ). Эту величину ввел Александр Грэхем Белл. Единица стала называться «бел». Одна десятичная бела называется децибел (дБ). Он ввел ее для измерения силы звука.

Человеческое ухо воспринимает силу звука логарифмически. Так, уровень в 100 ватт по сравнению с уровнем в 10 ватт для человеческого уха слышится громче в два раза (но не в 10 раз). Возрастание силы звука на один децибел является примерно наименьшим приростом, которое способно различить человеческое ухо.

Эта единица измерения используется в настоящее время в качестве основы для измерений относительных уровней мощностей, напряжений и других физических величин. Транзистор, например, может усиливать сигнал, увеличивая амплитуду его напряжения, тока или мощности. Это увеличение называется усилением. Аналогично, затухание — это уменьшение напряжения, тока или мощности при распространении сигнала по линии связи.

Основные уравнения, определяющие децибел, следующие:

где U — напряжение, I — ток и P — мощность. Децибел, таким образом, характеризует отношение двух напряжений, токов или мощностей. Необходимо отметить, что в случае напряжения и тока отношение логарифмов умножается на 20, а в случае мощности на 10.

Читайте также:  Мощность двигателя для шредера

Разобраться в децибелах поможет одно общее правило. При измерении мощности потери в 3 дБ означают уменьшение мощности на 50%, т.е. если была мощность 1 мВт, то будет 0,5 мВт. Аналогично увеличение на 3 дБ означает удвоение мощности: 1мВт превращается в 2 мВт. Для напряжения или тока удвоение или уменьшение вдвое будет происходить при изменении на 6 дБ, поскольку, как видно из приведенных выше уравнений, для тока и напряжения коэффициент равен не 10, а 20. При прокладке кабелей практически всегда приходится иметь дело с мощностью.

В случае мощности правило децибел выглядит так:

Увеличение:

  • 20 дБ = 100-кратное возрастание мощности;
  • 10 дБ = 10-кратное возрастание мощности;
  • 3 дБ = двукратное возрастание мощности.

    Уменьшение:

  • -3 дБ = двукратная потеря мощности;
  • -6 дБ = 75%-ная потеря мощности (остается 25%);
  • -10 дБ = 90%-ная потеря мощности (остается 10%);
  • -20 дБ = 99%-ная потеря мощности (остается 1%);
  • -30 дБ = 99,9%-ная потеря мощности (остается 0,1%);
  • -40 дБ = 99,99%-ная потеря мощности (остается 0,01%).
  • При всего лишь -20 дБ теряется 99% мощности. Если исходный сигнал имеет мощность 1 мВт, то при -20 дБ остается только 0,01 мВт (10 микроватт). Мощность падает на два порядка в 100 раз.

    В волоконной оптике, как правило, имеют дело с затуханием оптической мощности. По мере перемещения по волокну свет теряет свою мощность. Эти потери выражаются в децибелах. Затухание, выраженное в децибелах, имеет отрицательную величину.

    Иногда в соотношении, используемом для определения затухания или усиления, используется постоянное значение Pin. В волоконной оптике обычно используется величина в 1 милливатт (мВт).

    дБм (dBm) означает «децибел, соотнесенный к милливатту». Единицы дБм часто используются инженерами и техниками.

    Соотношение мощности и единиц, дБм

    10 мВт = +10 дБм 10 мкВт = -20 дБм
    5 мВт = +7 дБм 1 мкВт = -30 дБм
    1 мВт = 0 дБм 100 нВт = -40 дБм
    500 мкВт = -3 дБм 10 нВт = -50 дБм
    100 мкВт =-10 дБм 1 нВт = -60 дБм
    50 мкВт = -13 дБм 100 пВт = -70 дБм

    Объем и скорость передачи информации. Объем информации измеряется в битах.

    Бит — это минимальное количество информации, составляющее выбор одного из двух возможных вариантов. Когда создается возможность дать ответ на любой вопрос «да» или «нет», то это и есть один бит информации, т.е. в этом случае меньше бита информации не бывает.

    Бит — это абстрактное понятие, которое обеспечивает количественное измерение информации, доступное компьютерным системам.

    Математически нам проще всего «битовую информацию» описывать числовыми методами, а именно двоичными числами, которые составляются из цифр «0» и «1».

    Сколько передается «ноликов» или «единичек» — столько передается битов информации.

    Для кодирования разнообразных вариаций в какой-либо области знаний (например, даже обычного текста, не говоря уже о звуковой или цветовой информации) одного бита информации мало. Для кодирования разнообразных вариаций требуется увеличение разрядности двоичного числа (его удлинении). Двоичные числа формируются с фиксированной разрядностью, такая совокупность разрядов получила название «байт».

    Байт — последовательность из восьми бит, рассматриваемая как одно целое.

    Современные объемы характеризуются объемами в килобайтах, мегабайтах, гигабайтах, терабайтах

    Рассмотрим книгу объемом 100 000 слов, содержащую, например, 250 страниц, причем допустим, что каждое слово состоит в среднем из пяти букв. При использовании для преобразования текста в цифровую форму каждая буква кодируется восемью двоичными цифрами. Таким образом, один байт может принимать 28 = 256 различных значений, причем, учитываются все строчные и прописные буквы, цифры, промежутки между словами и знаки препинания. Тогда общий объем содержащейся в книге информации составит 4 Мбит.

    Производимые в настоящее время оптические носители информации позволяют хранить 210, 650, 700, 4700 Мбайт.

    Производимые современной промышленностью устройства хранения данных (жесткий диск) могут достигать объема нескольких Тбайт и их объемы с каждым годом возрастают.

    Пропускная способность канала. Под пропускной способностью канала понимают максимально достижимую скорость передачи полезной информации в бит/с. В качестве ограничений обычно выступают протяженность канала, тип среды, мощность передатчика, чувствительность приемника, занимаемая полоса частот, характеристики помех и шумов, допустимая доля ошибок.

    Если раньше сети работали обычно со скоростью 10 Мбит/с, то сейчас сети поддерживают 100 и 1000 Мбит/с. Причем Internet трафик, в настоящие время, в телекоммуникационных сетях общего пользования превышает голосовой трафик.

    Понятие скорости передачи. Скорость передачи — это количество бит в единицу времени (В) [бит/с].

    Различные услуги электросвязи требуют различных скоростей передачи. Например, факсимильная передача одной страницы текста формата А4 (210х297 мм), в зависимости от степени обработки сигналов, требует от 200 кбит/с до 2 Мбит/с. Аналоговая передача видеосигнала требует в реальном масштабе времени до 6 МГц, а цифровая передача 130-600 Мбит/с. Современные скорости локальных вычислительных сетей составляют от 10 Мбит/с до 1 Гбит/с. Требования к скоростям речевого и видеосигнала могут существенно различаться в зависимости от вида обработки.

    Звуковой канал. Для обеспечения разборчивости речи требуется полоса частот около 3 кГц, лежащая в диапазоне от 300 Гц до 3,4 кГц для обычной стандартной телефонной сети. На практике по цифровому телефонному каналу эта полоса частот передается со скоростью 64 кбит/с. При этом аналоговый сигнал дискретизируется с интервалом 125 мкс (частота дискретизации fs =8 кГц), а каждый отсчет кодируется 8-битовым словом.

    Связь между скоростью передачи и расчетной частотой зависит от используемого метода кодирования сигналов. Например, для кодирования без возврата к нулю — аналогично обычным цифровым данным (высокий уровень означает 1, а низкий 0), расчетная частота для линии связи в 100 МГц равна скорости передачи данных 100 Мбит/с.

    Шум. Шумом называется любое возмущение электрического или оптического характера, отличное от полезного сигнала. Сигнал несет полезную информацию, а шум является чем-то дополнительным и бесполезным. Любой канал связи подвержен воздействию шумов. Слишком слабый сигнал невозможно различить на фоне шума, для этого необходимо либо уменьшить уровень шума, либо усилить сигнал. В процессе усиления в приемном устройстве усиливается не только сигнал, но и шум. Некоторые виды шума можно отфильтровать с помощью электронных фильтров. Удобно иметь уровень сигнала более высокий по сравнению с уровнем шума, а еще лучше иметь сильный сигнал и слабый шум.

    Примером шумов может служить так называемая перекрестная помеха. Когда во время телефонного звонка происходит коммутация двух различных телефонных линий, в результате чего вы можете у себя в трубке слышать то, что говорят другие люди. Это искусственный шум. В отличие от искусственных, многие типы естественных шумов устранить нельзя, поскольку они появляются в результате природных явлений. Вам, наверное, знакомо характерное потрескивание в радиоприемнике, которое вызвано разрядами молнии в атмосфере Земли. Это пример атмосферных шумов (atmospheric noise). Кроме эффектов, связанных с природными процессами, протекающими в атмосфере и на поверхности Земли, существуют внешние шумы, которые называются космическими. Эти шумы заметны лишь на частотах до 1 ГГц.

    Электрический шум можно определить как нежелательную энергию, которая сопровождает сигнал в электронной системе внутренние шумы. В любой точке системы, кроме сигнала, всегда присутствуют шумы. Это явление — неотъемлемое свойство электронной цепи.

    Тепловой шум. Вследствие теплового возбуждения атомов проводника или резистора в веществе возникают свободные электроны. Возникающий при этом шум носит название теплового шума, так как его энергия возрастает с увеличением температуры.

    где k — постоянная Больцмана, равная 1,38*10 -23 Дж/К; Т — абсолютная температура, выраженная в градусах по шкале Кельвина, К; ΔF — рассматриваемая ширина полосы частот, например полоса пропускания измерительного прибора или системы.

    Можно предположить, что присутствие шумов в системе приводит к нарушению её работоспособности. Однако на самом деле большинство систем функционирует вполне нормально, если уровень шумов не превышает заданного уровня.

    В большинстве случаев абсолютный уровень мощности шума редко является тем параметром, по которому пользователь может оценить качество системы. Как правило, для этой цели удобней пользоваться отношением мощностей сигнала и шума. Отношение сигнал/шум (S/N) — общепринятый способ выражения качества сигнала в системе. Это отношение выражается обычно в дБ средней энергии сигнала к средней энергии шумов различной природы.

    где S — мощность сигнала в Вт, N мощность шума в Вт.
    Часто реальные системы работают в очень большом динамическом диапазоне, который простирается на два или три порядка величин; при этом приходится иметь дело как с очень малыми, так и с очень большими значениями отношения сигнал/шум.

    Итак, очевидно, что именно отношение мощностей сигнала и шума, а не их абсолютные значения, является определяющим параметром качества системы.

    Типичные значения приемлемого отношения сигнал/шум составляют около 16 дБ — для передачи речи с низким качеством и до 30 дБ — для коммерческих телефонных систем, наконец, 50-60 дБ для высококачественного радиовещания музыкальных программ.

    Пример. Пусть входное сопротивление усилителя ТВ приемника равно 500 Ом, сигнал на выходе равен 1 мВ. Полоса частот сигнала 10 МГц, температура сопротивления нагрузки — 27°С. Тогда мощность сигнала на нагрузке

    эквивалентная мощность шума:

    N = kTsΔF = 1.38*10 -23 *300*10 6 = 4.14*10 -14 Вт,

    а отношение сигнал/шум на нагрузке:

    S/N (дБ)=10log10(0.002 мВт/4.14*10 -14 Вт)=48 дБ

    Еще одним преимуществом выражения отношения С/Ш в децибелах является то, что общее отношение сигнал/шум при соединении нескольких отдельных электрических цепей определяется как сумма отдельных отношений С/Ш всех цепей, а не их произведение.

    Скорость передачи реального канала связи зависит не только от полосы пропускания, но и от отношения сигнал/шум.
    Теоретическую максимальную скорость передачи для реального канала связи можно вычислить, используя теорему Шеннона:

    где C — скорость передачи данных в бит/с; ΔF — полоса пропускания канала в герцах; S — мощность сигнала в ваттах; Т — мощность шума в ваттах.

    Из этой формулы можно видеть, что увеличение полосы пропускания или увеличение отношения сигнала к шуму позволяет увеличить скорость передачи данных и что сравнительно небольшое увеличение полосы пропускания эквивалентно гораздо большему увеличению отношения сигнала к шуму.

    Для цифровых систем существует аналог отношения сигнал — шум, который называется отношение бит/ошибка (ВЕR).

    BER = (Число ошибочных битов) / (Всего битов).

    Данный параметр является отношением объема неправильно принятой информации к общему объему переданной информации, выраженной в битах. Отношение 10 -9 означает, что при передаче одного миллиарда бит информации была допущена одна ошибка. Подобно S/N требования к величине отношения бит/ошибка зависят от области применения и многих других факторов. Лучшее S/N подразумевает лучшее отношение ВЕR.

    Источник

    

    9
    Тестирование волоконно-оптических систем

    Введение

    После установки волоконно-оптической системы крайне важно тщательно ее протестировать, чтобы убедиться в соответствии техническим требованиям проекта. Тестирование волоконно-оптической системы как во время установки, так и при вводе системы в эксплуатацию является обязательной частью проекта. Проводимые приемочные испытания определят, является ли окончательно установленный кабель цельным и стабильным, были ли причинены какие-нибудь повреждения при установке кабеля, правильны ли вычисленные на этапе проектирования значения потерь соединений, коннекторов, длины волокна и т. д. и работает ли окончательно установленная система с должной производительностью..

    Если система была тщательно спроектирована, а затем правильно установлена, результаты приемочного теста обычно показывают лучшие значения производительности, чем проектные параметры (в предположении, что придерживались консервативного подхода к проектированию). В редких случаях связь будет хуже, чем проектировалась. Это может быть из-за неожиданных потерь вследствие избыточных изгибов. В течение срока службы показатели линии связи также будут ухудшаться, что должно быть принято в расчет при проектировании. Во время приемочных испытаний будет также подтвержден учитываемый для этих непредвиденных потерь запас надежности.

    Данная глава рассматривает требования к тестированию волоконно-оптических кабелей и передающего и приемного оптического оборудования. В первой части главы изучаются фундаментальные понятия, характерные для оптических измерений. Во второй части подробно исследуются основные волоконно-оптические тесты и оборудование. В заключение обсуждается ряд других, менее распространенных тестов, связанных с характеристиками окончательно установленных систем.

    9.1. Фундаментальные понятия оптических измерений

    9.1.1. Оптическая мощность

    Основной единицей измерения, используемой в волоконной оптике, является мощность света. Как и электрическая мощность, оптическая мощность измеряется в ваттах.

    Свойства света похожи на электрические. Световая энергия, как и электрическая энергия, теоретически принимает форму синусоидальных волн. Поэтому основные компоненты математических формул, использующихся для вычисления связанных с мощностью электрических измерений, могут также использоваться для вычисления связанных с мощностью оптических измерений.

    К оптическим измерениям применяются следующие аналогии.

    • Мощность является мерой скорости передачи энергии (где энергия Q измеряется в Джоулях). То есть:

    • Мощность является функцией напряжения (U) и тока (I). У световой волны есть электрический компонент и магнитный компонент, что аналогично компонентам напряжения и тока в электрической энергии. Поэтому для электрической энергии:

    для световой энергии:

    где D- электрическое смещение; В — магнитная индукция; Е — напряженность электрического поля; Н — напряженность магнитного поля; ε — диэлектрическая проницаемость среды; μ -магнитная проницаемость среды; S — плотность энергии (ватт/квадратный метр).

    • Световая энергия прямо пропорциональна квадрату амплитуды электромагнитной волны. Мощность электрической энергии прямо пропорциональна квадрату амплитуды напряжения или тока.

    В случае световой энергии сопротивление фактически является проницаемостью стекла. Для света общая энергия Q вычисляется по формуле

    где Qp — энергия одного фотона; N- число фотонов.

    Мощность света обычно измеряется и указывается в децибелах. Обсуждение в разделе 2.3, касающееся измерения в децибелах, относится также к оптическим измерениям.

    Оптический передатчик передает сигнал в форме импульсов. Уровень мощности передаваемого сигнала постоянно меняется. Можно измерить мгновенное пиковое значение или среднее значение этой мощности. Это показано на рис. 9.1.

    Рис.9.1. Мощность полученного сигнала

    Мощность также прямо пропорциональна частоте и обратно пропорциональна длине электромагнитной волны (С = λ х f). Теоретически свет представляется в форме крошечных частиц, называемых фотонами, которые излучаются атомами при переходах электронов между энергетическими уровнями, окружающими атомы. С возрастанием частоты (то есть снижением длины волны) пропорционально увеличивается энергия фотона. o Фактически это означает, что для возбуждения электрона для излучения фотона с высокой частотой необходимо больше энергии, чем для излучения фотона с низкой частотой. Следовательно, поскольку измерение оптической энергии есть мера потока фотонов в единицу времени, оптическая мощность прямо пропорциональна частоте и обратно тропорциональна длине волны. Эта зависимость описывается законом Планка:

    Где Q — энергия фотона, a h — постоянная Планка.

    9.1.2. Измерение мощности

    Различные материалы, использующиеся при производстве детекторов света, чувствительны к различным длинам волн. Например, кремниевые детекторы интенсивно отвечают на сигналы 850 нм, тогда как детекторы из арсенида индия и галлия (InGaAs) дают сильные ответы на сигналы 1300 и 1550 нм. Поэтому детекторы света, используемые для целей измерений, должны быть откалиброваны для той частоты, которую они измеряют.

    Детекторы обеспечивают линейный ответ лишь в ограниченном динамическом диапазоне уровня входного сигнала. Поэтому они должны быть откалиброваны для определенного применения и ожидающегося на входе в детектор из волоконно-оптического кабеля диапазона мощностей.

    Время ответа детектора в экспонометре очень большое по сравнению со скоростью входных импульсов. Поэтому большинство экспонометров калибруется для измерения средней мощности.

    9.1.3. Оптическая и электрическая полоса пропускания

    Полоса пропускания определяется в двух разновидностях, оптической и электрической. Оптической полосой пропускания называют наивысшую частоту модуляции, при которой мощность оптической системы снижается на 3 дБ по сравнению с оптической мощностью на более низкой частоте. Из-за процесса преобразования в оптическом детекторе световой энергии в электрическую снижение оптической мощности на 3 дБ дает снижение электрической мощности на 6 дБ. При измерении электрической полосы пропускания используются те же правила, что и для оптической; электрическая полоса пропускания определяется снижением мощности на 3 дБ. Поэтому при необходимости измерения оптической полосы пропускания нужно помнить, что детектор покажет снижение электрической мощности на-6 дБ. Оборудование измерения мощности компенсирует это и покажет правильное значение оптической мощности. Процесс измерения оптической полосы пропускания обсуждается в разделе 9.3.3.

    Источник