Меню

Мощность это величина равная совершенной за единицу времени

Механическая работа и мощность

Содержание

  1. Работа различных сил
  2. Работа силы упругости
  3. Работы силы трения покоя
  4. Знак работы силы
  5. Геометрический смысл работы
  6. Мощность
  7. Коэффициент полезного действия

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Модуль силы тяжести: F тяж = mg

Работа силы тяжести: A = mgs cosα

Модуль силы трения скольжения: F тр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Модуль силы упругости: F упр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0 о , то cosα = 1.
  2. Если 0 о o , то cosα > 0.
  3. Если α = 90 о , то cosα = 0.
  4. Если 90 о o , то cosα о , то cosα = –1.
Читайте также:  Прямого расчета методом удельной мощности

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180 о ). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0 о ). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

Мощность

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

F т — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180 о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Читайте также:  Сплит системы мощностью охлаждения до 4 5 квт

Источник

Мощность

Урок 36. Физика 7 класс ФГОС

Конспект урока «Мощность»

«Жизнь учит только тех, кто её изучает»

В.О. Ключевский

В этой теме речь пойдёт о мощности.

В прошлой говорилось о физической величине — механической работе. Механическая работа — это скалярная физическая величина, пропорциональная приложенной к телу силе и пройденному телом пути. Единицей работы в системе СИ является Дж (джоуль). 1 Дж — эта работа, совершаемая силой 1 Н на пути, равном 1 м.

Было установлено, что механическая работа характеризует результат действия на тело силы на пройденном им пути. При отсутствии движения тела силы, действующие на тело, не совершают работы.

Однако одну и ту же работу можно выполнить за разный промежуток времени. Рассмотрим простой пример: человеку, для перемещения груза массой 20 кг на расстояние в 3 км необходимо затратить около 2 часов, а автомобилю для этого достаточно нескольких минут. Работа выполняется одинаковая. Одинаковая масса перемещается на одно и то же расстояние. Но быстрота совершения работы силой человека и силой тяги автомобиля разная. За единицу времени сила тяги автомобиля выполняет работу большую, чем сила человека. Для описания быстроты совершения работы вводится физическая величина, называемая мощностью.

Мощностьэто физическая величина, численно равная работе, совершенной за единицу времени. Обозначается мощность латинской буквой N.

За единицу мощности в системе СИ принимается мощность, при которой действующая на тело сила за 1 с совершает работу в 1 Дж. Эта единица мощности называется ватт (Вт) в честь английского изобретателя Джеймса Уатта.

Для измерения больших мощностей ис­пользуются кратные единицы: гВт (гектоватт), кВт (киловатт) и МВт (мегаватт). А для малых мощностей употребляются дольные единицы: мВт (милливатт) и мкВт (микроватт).

Автомобилисты по традиции используют старинную единицу мощности — лошадиную силу (л.с.). 1 л.с. — это мощность, которую развивает лошадь при подъеме груза, массой 75 кг на высоту 1 м за 1 с.

В этих внесистемных единицах мощность первого советского трак­тора «Коммунар» на гусеничном ходу была равна 50 л.с.

Опытный водитель всегда разумно использует мощность своей машины, управляя скоростью вращения колес. Почему? Запишем формулу мощности.

Распишем работу, как произведение силы и пройденного под действием этой силы пути.

Так как , то, можно записать, что мощность равна произведению силы, действующей на тело, и скорости тела.

Таким образом, при заданной мощности, чем меньше будет скорость тела, тем больше будет сила, действующая на него. Вот почему водители тракторов, вспахивая землю, т.е. когда требуется большая сила, едет на малой скорости, чтобы увеличить силу тяги двигателя. То же самое делает и водитель машины, трогаясь с места или двигаясь в гору. Именно для этого в автомобилях и тракторах есть специальное устройство для переключения скорости вращения колес — коробка передач, рукоятка которой расположена близко к правой руке водителя.

Зная мощность механизма, можно рассчитать работу, совершаемую этим механизмом за какой-нибудь промежуток времени.

Задача 1. Найдите мощность механизма, с помощью которого совершена работа в 3 МДж за 2 минуты.

Задача 2. На уроке физкультуры мальчик массой 50 кг поднялся по канату на высоту 6 м за 8 с. Определите среднюю мощность, развиваемую мальчиком при подъеме.

Читайте также:  Как увеличить мощность ноутбука dell

Задача 3. Определите мощность падающей воды, протекающей через плотину Саяно-Шушенской гидроэлектростанции, высота которой 242 м, а максимальный расход воды составляет 1434000 м 3 /мин.

Основные выводы:

Мощность – это скалярная физическая величина, характеризующая быстроту совершения работы:

Единица мощности в системе СИ является Вт (ватт).

1 Вт — это мощность, при которой за 1 с совершается работа 1 Дж.

Одинаковую мощность можно получить либо при большой скорости и небольшой силе, либо, наоборот, при малой скорости и большой силе.

Источник



Мощность (физика)

Мощность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Эффективная мощность, мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу. Различают полезную, полную и номинальную Э. м. двигателя. Полезной называют Э. м. двигателя за вычетом затрат мощности на приведение в действие вспомогательных агрегатов или механизмов, необходимых для его работы, но имеющих отдельный привод (не от двигателя непосредственно). Полная Э. м. — мощность двигателя без вычета указанных затрат. Номинальная Э. м., или просто номинальная мощность, — Э. м., гарантированная заводом-изготовителем для определённых условий работы. В зависимости от типа и назначения двигателя устанавливаются Э. м., регламентируемые стандартами или техническими условиями (например, наибольшая мощность судового реверсивного двигателя при определённой частоте вращения коленчатого вала в случае заднего хода судна — так называемая мощность заднего хода, наибольшая мощность авиационного двигателя при минимальном удельном расходе топлива — так называемая крейсерская мощность и т. п.). Э. м. зависит от форсирования (интенсификации) рабочего процесса, размеров и механического кпд двигателя. [1]

P = \frac<\Delta A data-lazy-src=