Меню

Линия 110 кв передаваемая мощность

ЛИ́НИЯ ЭЛЕКТРОПЕРЕДА́ЧИ

ЛИ́НИЯ ЭЛЕКТРОПЕРЕДА́ЧИ (ЛЭП), про­тя­жён­ное со­ору­же­ние из про­во­дов, ка­бе­лей, опор, изо­ля­то­ров и вспо­мо­гат. уст­ройств, пред­на­зна­чен­ное для пе­ре­да­чи или рас­пре­де­ле­ния элек­трич. энер­гии от элек­тро­стан­ций к под­стан­ци­ям и по­тре­би­те­лям, а так­же для свя­зи смеж­ных энер­го­сис­тем. По кон­ст­рук­тив­но­му ис­пол­не­нию раз­ли­ча­ют возд. ли­нии (ВЛ), про­во­да ко­то­рых под­ве­ше­ны над зем­лёй или над во­дой, и под­зем­ные (под­вод­ные) ЛЭП, в ко­то­рых ис­поль­зу­ют­ся гл. обр. си­ло­вые ка­бе­ли (см. Ка­бель элек­три­че­ский). Ге­не­ра­то­ры на элек­тро­стан­ци­ях пре­об­ра­зу­ют ме­ха­нич. энер­гию тур­бин в элек­три­че­скую, ко­то­рая по­сту­па­ет в транс­фор­ма­то­ры по­вы­шаю­щей под­стан­ции, да­лее по ЛЭП транс­пор­ти­ру­ет­ся к при­ём­ным под­стан­ци­ям. На при­ём­ных под­стан­ци­ях элек­тро­энер­гия транс­фор­ми­ру­ет­ся с кас­кад­ным сни­же­ни­ем на­пря­же­ния и по­сту­па­ет отд. по­тре­би­те­лям. Воз­душ­ные ЛЭП вме­сте с транс­фор­ма­тор­ны­ми под­стан­ция­ми об­ра­зу­ют элек­три­че­ские се­ти, ох­ва­ты­ваю­щие об­шир­ные тер­ри­то­рии, что по­зво­ля­ет обес­пе­чи­вать элек­тро­энер­ги­ей мно­же­ст­во по­тре­би­те­лей от ог­ра­ни­чен­но­го чис­ла элек­тро­стан­ций.

Классификация ЛЭП

ба­зи­ру­ет­ся на ря­де при­зна­ков, пер­вым из ко­то­рых яв­ля­ет­ся род то­ка. Раз­ли­ча­ют: ли­нии по­сто­ян­но­го то­ка (при­ме­ня­ют­ся ог­ра­ни­чен­но, т. к. элек­тро­пе­ре­да­ча по­сто­ян­но­го то­ка свя­за­на гл. обр. с тех­нич. труд­но­стя­ми соз­да­ния эф­фек­тив­ных не­до­ро­гих уст­ройств для пре­об­ра­зо­ва­ния пе­ре­мен­но­го то­ка в по­сто­ян­ный – в на­ча­ле ли­нии, и по­сто­ян­но­го то­ка в пе­ре­мен­ный – в кон­це ли­нии), трёх­фаз­но­го пе­ре­мен­но­го (по про­тя­жён­но­сти ВЛ по­лу­чи­ли наи­боль­шее рас­про­стра­не­ние в ми­ре), ЛЭП мно­го­фаз­но­го пе­ре­мен­но­го то­ка (шес­ти- и две­на­дца­ти­фаз­ные) – не по­лу­чи­ли ши­ро­ко­го рас­про­стра­не­ния. Од­ной из осн. ха­рак­те­ри­стик ЛЭП яв­ля­ет­ся её про­пу­ск­ная спо­соб­ность, т. е. та наи­боль­шая мощ­ность, ко­то­рую мож­но пе­ре­дать по ЛЭП с учё­том ог­ра­ни­чи­ваю­щих фак­то­ров. Мощ­ность, пе­ре­да­вае­мая по ЛЭП пе­ре­мен­но­го трёх­фаз­но­го то­ка, свя­за­на с её про­тя­жён­но­стью, на­пря­же­ни­ем и то­ко­вой на­груз­кой. По но­ми­наль­но­му на­пря­же­нию ЛЭП под­раз­де­ля­ют­ся на низ­ко­вольт­ные (до 1 кВ) и вы­со­ко­вольт­ные (св. 1 кВ), сре­ди ко­то­рых вы­де­ля­ют ли­нии сред­не­го (3–35кВ), вы­со­ко­го (110–220 кВ), сверх­вы­со­ко­го (330–750 кВ) и ульт­ра­вы­со­ко­го (св. 1000 кВ) на­пря­же­ний. Ос­вое­ние выс­ших уров­ней на­пря­же­ния обу­слов­ле­но не­об­хо­ди­мо­стью пе­ре­да­чи рас­ту­щих по­то­ков элек­тро­энер­гии на уве­ли­чи­ваю­щие­ся рас­стоя­ния и стрем­ле­ни­ем сни­зить по­те­ри от на­гре­ва про­во­дов ВЛ, ко­то­рые про­пор­цио­наль­ны квад­ра­ту то­ка (напр., ток уве­ли­чит­ся в 2 раза, по­те­ри воз­рас­тут в 4 раза). По ко­ли­че­ст­ву па­рал­лель­ных це­пей, про­кла­ды­вае­мых по об­щей трас­се, ВЛ бы­ва­ют од­но­цеп­ные (ВЛ пе­ре­мен­но­го то­ка, имею­щая один ком­плект, т. е. три фаз­ных про­во­да), двух­цеп­ные (ВЛ с дву­мя ком­плек­та­ми фаз­ных про­во­дов) и мно­го­цеп­ные (ВЛ, имею­щие бо­лее двух ком­плек­тов фаз­ных про­во­дов). По то­по­ло­ги­че­ским ха­рак­те­ри­сти­кам раз­ли­ча­ют ра­ди­аль­ные (мощ­ность по­сту­па­ет от един­ст­вен­но­го ис­точ­ни­ка), ма­ги­ст­раль­ные (от­хо­дит неск. от­ветв­ле­ний) и от­ветв­ле­ния (ли­нии, при­сое­ди­нён­ные од­ним кон­цом к др. ЛЭП в её про­ме­жу­точ­ной точ­ке). По функ­цио­наль­но­му на­зна­че­нию ЛЭП бы­ва­ют рас­пре­де­ли­тель­ные (ли­нии ме­ст­ных элек­трич. се­тей), пи­таю­щие (ли­нии се­тей рай­он­но­го зна­че­ния, ко­торые осу­ще­ст­в­ля­ют элек­тро­снаб­же­ние цен­тров пи­та­ния рас­пре­де­лит. се­тей), а так­же сис­те­мо­об­ра­зую­щие и меж­сис­тем­ные, ко­то­рые не­по­сред­ст­вен­но со­еди­ня­ют раз­ные энер­го­сис­те­мы и пред­на­зна­че­ны для вза­им­но­го об­ме­на мощ­но­стью как в нор­маль­ном, так и в ава­рий­ном ре­жи­ме.

Конструкция ЛЭП

вклю­ча­ет про­во­да, изо­ля­то­ры, опо­ры (рис.). Про­во­да воз­душ­ных ЛЭП долж­ны об­ла­дать хо­ро­шей элек­трич. про­во­ди­мо­стью, ме­ха­нич. проч­но­стью, стой­ко­стью про­тив ат­мо­сфер­ных и хи­мич. воз­дей­ст­вий. Осн. про­вод­ни­ком элек­трич. энер­гии ЛЭП в Рос­сии слу­жат алю­ми­ние­вые про­во­да; за ру­бе­жом ши­ро­кое при­ме­не­ние по­лу­чи­ли алю­ми­ние­вые спла­вы, об­ла­даю­щие по­вы­шен­ной ме­ха­нич. проч­но­стью (ал­д­рей, аль­ме­лек, ак­рон), а так­же вы­со­ко­тем­пе­ра­тур­ные спла­вы c цир­ко­ни­ем (ра­бо­чая темп-ра до 150–210 °C). Про­во­да (не­изо­ли­ро­ван­ные) из­го­тав­ли­ва­ют­ся скрут­кой из не­сколь­ких сло­ёв (по­ви­вов) круг­лых или фа­сон­ных про­во­лок; при­ме­ня­ют­ся пре­им. уп­роч­нён­ные (т. н. ста­ле­алю­ми­ние­вые) с сер­деч­ни­ка­ми, сви­ты­ми из про­во­лок ка­нат­ной ста­ли. На ЛЭП но­ми­наль­но­го на­пря­же­ния до 220 кВ ис­поль­зу­ют­ся толь­ко оди­ноч­ные про­во­да в ка­ж­дой из трёх фаз. В ЛЭП на­пря­жени­ем 330 кВ и вы­ше для уст­ра­не­ния по­яв­ле­ния про­тя­жён­но­го ко­рон­но­го раз­ря­да на про­во­дах (вы­зы­ва­ет до­пол­нит. по­те­ри элек­трич. энер­гии) при­ме­ня­ют рас­ще­п­лён­ные фа­зы (вме­сто од­но­го фаз­но­го про­во­да боль­шо­го се­че­ния под­ве­ши­ва­ет­ся неск. скре­п­лён­ных ме­ж­ду со­бой про­во­дов мень­ше­го се­че­ния). Ми­ним. чис­ло про­во­дов в рас­щеп­лён­ной фа­зе уве­ли­чи­ва­ет­ся со­от­вет­ст­вен­но рос­ту но­ми­наль­но­го на­пря­же­ния ЛЭП: 330 кВ – 2; 500 кВ – 3; 750 кВ – 4; 1150 кВ – 8. Уве­ли­че­ние ко­ли­че­ст­ва про­во­дов в фа­зе свы­ше ми­ни­маль­ной по­зво­ля­ет про­пор­цио­наль­но уве­ли­чить про­пу­ск­ную спо­соб­ность ЛЭП (т. е. наи­боль­шую воз­мож­ную ак­тив­ную мощ­ность). За ру­бе­жом и в Рос­сии на вновь со­ору­жае­мых ЛЭП до 35–110 кВ ши­ро­ко при­ме­ня­ют­ся са­мо­не­су­щие изо­ли­ров. про­во­да, что по­зво­ля­ет умень­шить ме­ж­ду­фаз­ные рас­стоя­ния на опо­рах, со­кра­тить ши­ри­ну вы­ру­бае­мых про­сек в лес­ных мас­си­вах.

Элек­трич. изо­ля­ция обес­пе­чи­ва­ет­ся ли­бо гир­лян­да­ми под­вес­ных та­рель­ча­тых изо­ля­то­ров из за­ка­лён­но­го стек­ла, со­еди­няе­мых ме­ха­ни­че­ски в це­поч­ки, ли­бо стерж­не­вы­ми по­ли­мер­ны­ми изо­ля­то­ра­ми, ос­но­ву ко­то­рых со­став­ля­ет стек­ло­пла­сти­ко­вый стер­жень, гер­ме­тич­но за­щи­щён­ный реб­ри­стой обо­лоч­кой, из­го­тов­лен­ной из крем­ний­ор­га­нич. ре­зи­ны. Пре­иму­ще­ст­ва­ми по­ли­мер­ной изо­ля­ции яв­ля­ют­ся: ма­лый вес; удоб­ст­ва хра­не­ния, транс­пор­ти­ров­ки и мон­та­жа; по­вы­шен­ная стой­кость к раз­ру­ше­ни­ям и др. Кре­п­ле­ние про­во­дов к изо­ля­ции и изо­ля­ции к опо­рам осу­ще­ст­в­ля­ет­ся при­ме­не­ни­ем уз­лов и из­де­лий ар­ма­ту­ры возд. ли­ний (за­жи­мы про­во­дов, серь­ги, ско­бы и др.).

Для под­дер­жа­ния про­во­дов на без­опас­ном рас­стоя­нии от зем­ной (вод­ной) по­верх­но­сти ис­поль­зу­ют­ся изо­ля­ци­он­ные под­вес­ки и опо­ры (де­рев., жел.-бе­тон. и ме­тал­ли­че­ские), а так­же иные не­су­щие кон­ст­рук­ции и ес­теств. об­ра­зо­ва­ния (ска­лы, крон­штей­ны и стой­ки на др. инж. со­ору­же­ни­ях). Де­рев. опо­ры (для ЛЭП до 220 кВ вклю­чи­тель­но) в Рос­сии из­го­тов­ля­ют­ся из брё­вен (со­сна, ли­ст­вен­ни­ца), стан­дарт­ные дли­ны ко­то­рых ог­ра­ни­че­ны наи­боль­шим раз­ме­ром 16 м. За ру­бе­жом (США, Ка­на­да) раз­ра­бо­та­ны кон­ст­рук­ции опор, со­стоя­щие из длин­ных клеё­ных де­рев. эле­мен­тов, что де­ла­ет воз­мож­ным при­ме­не­ние де­рев. опор при но­ми­наль­ных на­пря­же­ни­ях до 500 кВ вклю­чи­тель­но. В кон­ст­рук­ци­ях жел.-бе­тон. опор (до 500 кВ вклю­чи­тель­но) стой­ка­ми яв­ля­ют­ся длин­но­мер­ные (до 26 м) ко­нич. и ци­лин­д­рич. тру­бы с внутр. пред­ва­ри­тель­но на­пря­жён­ной ар­ма­ту­рой и цен­три­фу­ги­ро­ван­ным уп­лот­не­ни­ем бе­то­на. По­пе­реч­ные эле­мен­ты та­ких опор (тра­вер­сы) из­го­тов­ля­ют­ся из го­ря­че­ка­та­ных сталь­ных угол­ков. Для про­из-ва ме­тал­лич. опор (для всех на­пря­же­ний) ис­поль­зу­ют­ся уг­ле­ро­ди­стые и низ­ко­ле­ги­ро­ван­ные ста­ли, кон­ст­рук­ци­он­ные алю­ми­ние­вые спла­вы пре­им. ти­па авиа­лей (сис­те­мы Al – Mg – Si). Наи­боль­шее рас­про­стра­не­ние алю­ми­ние­вые опо­ры по­лу­чи­ли в США и Ка­на­де. Кон­ст­рук­тив­ные схе­мы ме­тал­лич. опор очень раз­но­об­раз­ны: од­но­сто­еч­ные и пор­таль­ные, как сво­бод­но­стоя­щие, так и удер­жи­вае­мые в нор­маль­ном про­стран­ст­вен­ном по­ло­же­нии с по­мо­щью рас­тя­жек, при­креп­лён­ных к по­гру­жён­ным в грунт ан­кер­ным пли­там. Стой­ки и тра­вер­сы ме­тал­лич. опор мо­гут иметь кон­ст­рук­цию в ви­де 4- или 3-гран­но­го обе­ли­ска, сто­ро­ны ко­то­ро­го пред­став­ля­ют со­бой со­еди­нён­ные пло­ские ре­шёт­ча­тые фер­мы. В Рос­сии по­лу­ча­ют всё боль­шее при­ме­не­ние ко­нич. мно­го­гран­ные сталь­ные опо­ры, из­го­тав­ли­вае­мые спо­со­бом из­ги­ба лис­то­вой за­го­тов­ки на спец. мощ­ном прес­се с ком­пь­ю­тер­ным управ­ле­ни­ем. Все ме­тал­лич. опо­ры ус­та­нав­ли­ва­ют­ся на фун­да­мен­ты в от­ли­чие от де­рев. и жел.-бе­тон. опор. Ши­ро­ко ис­поль­зу­ют­ся жел.-бе­тон. гри­бо­вид­ные под­лож­ни­ки не­сколь­ких мо­ди­фи­ка­ций, имею­щие опор­ную пли­ту и стой­ку с вы­пу­щен­ны­ми ан­кер­ны­ми бол­та­ми для за­кре­п­ле­ния «баш­ма­ка» опо­ры. Не­дос­тат­ка­ми та­ких фун­да­мен­тов яв­ля­ют­ся боль­шой вес и не­об­хо­ди­мость вы­ка­пы­ва­ния глу­бо­ко­го кот­ло­ва­на для ус­та­нов­ки, его об­рат­ной за­сып­ки и по­сле­дую­ще­го уп­лот­не­ния грун­та. Этих не­дос­тат­ков ли­ше­ны свай­ные фун­да­мен­ты, для ко­то­рых мо­гут при­ме­нять­ся жел.-бе­тон. приз­ма­тич. сваи, за­глуб­ляе­мые в грунт спо­со­бом виб­ров­дав­ли­ва­ния, и сталь­ные вин­то­вые сваи. Фун­да­мен­ты сталь­ных мно­го­гран­ных опор за ру­бе­жом (США) из­го­тав­ли­ва­ют­ся спо­со­бом бе­то­ни­ро­ва­ния в кот­ло­ва­не на мес­те ус­та­нов­ки опо­ры с при­ме­не­ни­ем опа­луб­ки и ар­ма­ту­ры. В Рос­сии на­хо­дят при­ме­не­ние жел.-бе­тон. труб­ча­тые фун­да­мен­ты боль­шо­го диа­мет­ра и гри­бо­вид­ные под­лож­ни­ки, ус­та­нав­ли­вае­мые по кру­гу.

Технические характеристики и защита ЛЭП

Важ­ней­шие ха­рак­те­ри­сти­ки воз­душ­ных ЛЭП: $l$ – дли­на про­лё­та ли­нии (рас­стоя­ние ме­ж­ду со­сед­ни­ми опо­ра­ми); $d$ – рас­стоя­ние ме­ж­ду со­сед­ни­ми про­во­да­ми (фа­за­ми) ли­нии; $λ$ – дли­на гир­лян­ды изо­ля­то­ров; $H$ – пол­ная вы­со­та опо­ры; $h$ – наи­мень­шее (га­ба­рит­ное) до­пус­ти­мое рас­стоя­ние от низ­шей точ­ки про­во­да до зем­ли. Осн. кон­ст­рук­тив­ные па­ра­мет­ры воз­душ­ных ЛЭП 35–750 кВ, спро­ек­ти­ро­ван­ных до 2010 с при­ме­не­ни­ем уни­фи­цир. од­но­цеп­ных и двух­цеп­ных про­ме­жу­точ­ных опор, при­ве­де­ны в таб­ли­це.

Читайте также:  Мощность электроустановки свыше 100 квт

Основные конструктивные параметры воздушных ЛЭП

Номинальное напряжение, кВ
35 110 220 330 500 750
Пролёт l, м 150-200 170-250 250-350 300-400 350-450 350-540
Расстояние d, м 3,0 4,0 6,5 9,0 12,0 17,5
Длина гирлянды X, м 0,7-1,0 1,3-1,6 2,2-2,7 3,0-3,5 4,5-4,9 6,7-7,9
Высота опоры Н, м 10-21 13-31 22-41 25-43 27-32 38-41
Габарит линии h, м 6-7 6-7 7-8 7,5-8 8-15,5 12-23
Число проводов в фазе * 1 1 1 2 3 4-5
Диапазон сечений
проводников, мм 2
50-185 70-240 240-400 240-400 300-500 240-600
* В зарубежных странах приняты иные значения: 380 кВ — 4 (Германия, Франция, Швеция),
500 кВ -4 и 6 (Китай, компактные опоры).

Для умень­ше­ния ко­ли­че­ст­ва ава­рий­ных от­клю­че­ний, обу­слов­лен­ных ат­мо­сфер­ным элек­три­че­ст­вом при гро­зах, ЛЭП ос­на­ща­ют­ся мол­ние­за­щит­ны­ми тро­са­ми, за­кре­п­ляе­мы­ми на опо­рах вы­ше про­во­дов и пред­на­зна­чен­ны­ми для уст­ра­не­ния пря­мых по­па­да­ний мол­нии в про­во­да; пред­став­ля­ют со­бой сталь­ные оцин­ко­ван­ные мно­го­про­во­лоч­ные ка­на­ты или спец. уси­лен­ные ста­ле­алю­ми­ние­вые про­во­да не­боль­ших се­че­ний с це­лью обес­пе­че­ния ра­бо­ты вы­со­ко­час­тот­ных ка­на­лов дис­пет­чер­ской свя­зи. Раз­ра­бо­та­ны и при­ме­ня­ют­ся но­вей­шие кон­ст­рук­ции мол­ние­за­щит­ных тро­сов с вмон­ти­ро­ван­ны­ми в их труб­ча­тый сер­деч­ник оп­ти­ко-во­ло­кон­ны­ми пуч­ка­ми, обес­пе­чи­ваю­щи­ми мно­го­ка­наль­ную связь. В рай­онах с час­то по­вто­ряю­щи­ми­ся и силь­ны­ми го­ло­лёд­ны­ми от­ло­же­ния­ми воз­мож­ны ава­рии из-за про­бо­ев возд. про­ме­жут­ков при сбли­же­нии про­вис­ших тро­сов и про­во­дов, ес­ли от­сут­ст­ву­ет свое­вре­мен­ное плав­ле­ние осад­ка; в та­ких слу­ча­ях при­ме­ня­ют мол­ние­за­щи­ту ЛЭП.

Про­ек­ти­ро­ва­ние ЛЭП вы­пол­ня­ет­ся с учё­том тре­бо­ва­ний ог­ра­ни­че­ния ра­дио­по­мех для при­ём­ни­ков ра­дио- и те­ле­пе­ре­дач и тре­бо­ва­ний сни­же­ния влия­ния элек­тро­маг­нит­но­го по­ля на лю­дей и жи­вот­ных, на­хо­дя­щих­ся под про­во­да­ми дей­ст­вую­щих ли­ний. Под­зем­ная ЛЭП со­сто­ит из од­но­го или не­сколь­ких ка­бе­лей, сто­пор­ных, со­еди­ни­тель­ных и кон­це­вых муфт (за­де­лок) и кре­пёж­ных де­та­лей, а ЛЭП, со­дер­жа­щая мас­ло­на­пол­нен­ный или га­зо­на­пол­нен­ный ка­бель, снаб­жа­ет­ся так­же под­пи­ты­ваю­щей сис­те­мой и сиг­на­ли­за­ци­ей дав­ле­ния мас­ла (га­за). Про­тя­жён­ность ка­бель­ных ли­ний зна­чи­тель­но мень­ше, т. к. их стои­мость на по­ря­док вы­ше ВЛ, хо­тя ши­ри­на от­чу­ж­дае­мой под их трас­су тер­ри­то­рии су­ще­ст­вен­но мень­ше (по­след­нее яв­ля­ет­ся ре­шаю­щим в тех слу­ча­ях, ко­гда трас­са ли­нии про­хо­дит по гор. тер­ри­то­ри­ям, где стои­мость зем­ли, как пра­ви­ло, вы­со­ка и со­ору­же­ние ВЛ не­це­ле­со­об­раз­но по эко­ло­ги­чес­ким и ар­хи­тек­тур­но-пла­ни­ро­воч­ным тре­бо­ва­ни­ям).

Историческая справка

Од­на из пер­вых опыт­ных ЛЭП по­сто­ян­но­го то­ка про­тя­жён­но­стью 57 км при на­пря­же­нии 1,5–2 кВ со­ору­же­на ме­ж­ду го­ро­да­ми Мис­бах и Мюн­хен в 1882 франц. учё­ным М. Де­пре. В 1891 впер­вые в ми­ре осу­ще­ст­в­ле­на элек­тро­пе­ре­да­ча трёх­фаз­ным пе­ре­мен­ным то­ком при на­пря­же­нии 8,5 кВ на 170 км от ГЭС «Lauffen» до г. Франк­фурт-на-Май­не, спро­ек­ти­ро­ван­ная и по­стро­ен­ная М. О. До­ли­во-Доб­ро­воль­ским. Пер­вые ка­бель­ные ли­нии (под­зем­ные, ра­ди­ус дей­ст­вия 1 км, на­пря­же­ние 2 кВ) в Рос­сии поя­ви­лись в кон. 1870-x гг.; элек­тро­энер­гия, по­сту­пав­шая в ка­бель­ную сеть, ис­поль­зо­ва­лась гл. обр. для ос­ве­ще­ния ча­ст­ных до­мов. В 1897 пу­ще­ны в экс­плуа­та­цию на Лен­ских зо­ло­тых при­ис­ках элек­тро­стан­ция трёх­фаз­но­го то­ка и ЛЭП на­пря­же­ни­ем 10 кВ, дли­ной 13 км; в 1914 Р. Э. Клас­сон по­стро­ил ЛЭП «Элек­тро­пе­ре­да­ча» Бо­го­родск – Мо­ск­ва на­пря­же­ни­ем 70 кВ; в 1922 пу­ще­на в экс­плуа­та­цию ЛЭП на­пря­же­ни­ем 110 кВ Ка­шир­ская ГРЭС – Мо­ск­ва. В 1927–29 со­ору­же­на двух­цеп­ная коль­це­вая сеть на­пря­же­ни­ем 110 кВ во­круг Мо­ск­вы; в 1933 по­строе­на пер­вая в СССР ЛЭП на­пря­же­ни­ем 220 кВ Ниж­не­свир­ская ГЭС – Ле­нин­град; в 1950 пу­ще­на в экс­плуа­та­цию опыт­но-пром. ЛЭП по­сто­ян­но­го то­ка Ка­ши­ра – Мо­ск­ва на­пря­же­ни­ем 200 кВ, дли­ной 120 км. В 1952 в Шве­ции всту­пи­ла в дей­ст­вие пер­вая в ми­ре ЛЭП на­пря­же­ни­ем 380кВ, про­тя­жён­но­стью 960 км; в 1956 вве­де­на в экс­плуа­та­цию Юж. цепь двух­цеп­ной ЛЭП Куй­бы­шев (Са­ма­ра) – Мо­ск­ва на­пря­же­ни­ем 400 кВ, про­тя­жён­но­стью 812 км; в 1959 вве­де­ны в экс­плуа­та­цию пер­вые в ми­ре ЛЭП на­пря­же­ни­ем 500 кВ Куй­бы­шев – Урал и Вол­го­град – Мо­ск­ва; в 1964 за­кон­чи­лись ра­бо­ты по пол­но­му пе­ре­во­ду ЛЭП Куй­бы­шев – Мо­ск­ва на на­пря­же­ние 500 кВ и на­ча­лось фор­ми­ро­ва­ние сис­те­мо­об­ра­зую­щей се­ти 500 кВ в Ев­роп. час­ти стра­ны. В 1967 на­ча­лась экс­плуа­та­ция пер­вой в СССР и вто­рой в ми­ре (по­сле Ка­на­ды) опыт­но-пром. ЛЭП на­пря­же­ни­ем 750 кВ Ко­на­ко­во – Мо­ск­ва; в 1972–77 строи­тель­ст­во и по­этап­ный ввод в экс­плуа­та­цию тран­су­кра­ин­ской ма­ги­ст­ра­ли на­пря­же­ни­ем 750 кВ Дон­басс – Днепр – Вин­ни­ца – За­пад­ная Ук­раи­на; в 1975 вклю­че­ние в ра­бо­ту ЛЭП Ле­нин­град­ская АЭС – Ко­на­ко­во на­пря­же­ни­ем 750 кВ, про­тя­жён­но­стью 525 км; в 1985–88 осу­щест­влён по­этап­ный ввод в экс­плуа­та­цию уча­ст­ков пер­вой в ми­ре ЛЭП Эки­ба­стуз – Кок­че­тав – Кус­та­най на­пря­же­ни­ем 1150 кВ, про­тя­жён­но­стью 900 км, Кус­та­най – Че­ля­бинск (500 кВ, 321 км) и Эки­ба­стуз – Бар­на­ул (500 кВ, 697 км).

В Рос­сии об­щая про­тя­жён­ность экс­плуа­ти­руе­мых ЛЭП на­пря­же­ни­ем 35–1150 кВ со­ста­ви­ла ок. 3 млн. км (2010).

Источник

Не бывает линий 110 киловатт!

кВ и кВт — это разные величины! кВ — киловольты, кВт — киловатты. Оказывается, далеко не все об этом знают. Разберём, что к чему.

Идею статьи мне предложил кто-то из читателей в комментариях, за что ему огромное спасибо. Но поначалу про данную тему подумала: «Да не, ерунда какая-то! Не могут так ошибаться». А вот могут, ещё как могут.

Вот несколько примеров, что поисковик выдал по соответствующему запросу:

Ну что сказать, ему, поисковику, совершенно безразлично, какие наборы символов с какими картинками приводить в соответствие, вот и появляются «плотины ГРЭС» и «линии 110 кВт». Мне кажется, некоторые просветительские функции поисковым системам имело бы смысл добавить; нужно, нужно это, в перспективе, может, и придём к чему-то подобному.

Следующие картинки тоже на особую значительность не претендуют, подумаешь, технобложик какой-то и форум явно женский, но всё же. Просто показывает, что заблуждение существует.

Не бывает линий 110 киловатт!

Не бывает линий 110 киловатт!

А вот следующее уже серьёзнее. Это скрин из новости про отключение электроэнергии в Латвии этим летом. Это речь представителя энергетической компании, которой (представительке) абсолютно пофиг, мощности там или напряжения.

Не бывает линий 110 киловатт!

Я сначала было подумала, что у них вот так интересно, отмечают типа номинальную мощность линий (хотя нет такой, мощность разная всё время, нагрузка-то меняется. Можно говорить про натуральную мощность линий, но тут это и не она тоже). И только со второго прочтения до меня дошло, что речь всё-таки о классах напряжения, но единицы измерения не те.

Где же у ЛЭП киловольты, а где киловатты?

В любой электроэнергетической системе применяются разные классы напряжений. Всё имеет под собой обоснование, можете почитать, например, почему для передачи электроэнергии нужно повышать напряжение . Поэтому чем дальше нам надо передать мощность, тем выше будет напряжение. А вот электроустановки и электроприборы, естественно, работают на малом напряжении (бытовое — 220 В, не кило- никакое, просто вольты).

И напряжения разделяют по классам. Это именно, что классы, а не фактические значения. Вот смотрите.

Есть у нас распределительные сети, это линии 6, 10, 35 кВ (киловольт!).

Линия 6-10 кВ с изолированными проводами. По внешнему виду про класс напряжения можно понять по количеству изоляторов. Для 6 и 10 кВ изолятор один, так что тут точнее не скажешь. Поэтому и получился такой обобщённо-сетевой класс: 6-10 кВ. Но работает оно, конечно, в классе 6 или в классе 10 кВ, но по виду не определить (можно на опоре посмотреть, если интересно, на столбах бетонных должны быть трафаретные надписи с информацией, правда, не на всех).

Линия 35 кВ, изолятора три. К слову, вот эти ёршики на траверсах - это противоптичные устройства, чтобы всякие цапли с аистами на опору не садились и на изоляторы не гадили, а то потом и птичка всё, и линия отключилась

Вот возьмём, например, класс напряжения 35 кВ. Класс-то он и есть класс, а напряжение фактическое будет другим и будет колебаться. Скажем, в 9 утра измерения показывают 34,68 кВ, а в 14 часов того же дня 35,65 кВ.

Читайте также:  Лучшая мощность всасывания для автомобильного пылесоса

110 кВ — это вообще распределительные сети, однако, фактически они оказываются в некотором пограничном положении. Линии 110 кВ могут быть и транзитными, связывающими энергосистемы, и тупиковыми, у которых в конце какая-нибудь хилая подстанция.

Магистральные сети — это линии и подстанции классов напряжения 220, 330, 500 и 750 кВ. Есть ещё одна уникальная линия класса 1150 кВ. Существует, работает, правда, сейчас она 500 кВ на том же оборудовании.

И если класс напряжения — это однозначная категория, в рамках которой и работает объект, то с мощностью всё гораздо вариативнее. По одной и той же линии может протекать, например, 7 МВт, в другом режиме — 9,5 МВт, а отключили её с одного конца — мощность 0 МВт, хотя напряжение на линии и осталось.

Есть понятие номинальной мощности линии. Это мощность, которую в основном, рабочем режиме, будет передавать ЛЭП. А могут сложиться и другие режимы, в ходе проектирования их тоже рассчитывают, смотрят, как и что будет происходить, чтобы правильно подобрать провода и другое оборудование.

Так что нельзя сказать «линия 110 кВт». Она 110 кВ, класс напряжения у неё такой, а вот какая там по ней мощность передаётся, неизвестно. Будьте, пожалуйста, технически грамотны, я верю в вас.

Источник



3.1.1. Общие сведения

3.1.1. Общие сведения

Пропускная способность ВЛ устанавливается на основе расчета электрической сети. Средние значения дальности передачи и пропускной способности по линиям электропередачи напряжением 110-1150 кВ приведены в табл. 3.1.

Линии электропередачи состоят из ВЛ основной и распределительной сети. ВЛ основной сети обеспечивают связь между крупными электростанциями и передачу мощности от них в районы потребления электроэнергии. ВЛ распределительной сети обеспечивают передачу электроэнергии от ПС основной сети и электростанций к потребителям электроэнергии.

При проектировании основной электрической сети энергосистем рекомендуется:

намечать линии электропередачи через крупные узлы нагрузки, избегать прямых связей между электростанциями;

производить выбор схемы присоединения электростанции и ПС к основной сети с учетом надежности питания узла электрической сети и необходимости обеспечения транзита мощности по ВЛ;

сооружать между двумя узлами сети по одной трассе, как правило, не более двух линий электропередачи одного напряжения. При необходимости дополнительного усиления сети следует рассматривать целесообразность сооружения ВЛ по другим направлениям или выполнение электропередачи на более высоком напряжении.

Проектирование распределительной сети энергосистем осуществляется с учетом следующего:

в районах с малым охватом территории сетями при близких значениях технико-экономических показателей вариантов развития сети рекомендуется отдавать предпочтение сооружению ВЛ по новым трассам;

в крупных городах и промышленных районах с большой концентрированной нагрузкой по одной трассе может предусматриваться строительство двух и более ВЛ;

при прохождении ВЛ по территории городов, промышленных районов, на подходах к электростанциям и ПС, в стесненных условиях, лесных массивах и т. д. ВЛ рекомендуется выполнять на двухцепных опорах. При этом подвеска одной цепи рекомендуется в случае, когда необходимость ввода второй цепи возникает в срок более трех лет после ввода первой, а также когда отключение первой цепи на время проведения работ по подвеске второй допустимо по условиям электроснабжения. Допускается подвеска на одних опорах ВЛ разных классов напряжений;

при питании ПС с потребителями первой категории применение двух одноцепных ВЛ вместо одной двухцепной допускается при наличии обоснований.

При развитии распределительных сетей отдельных номинальных напряжений необходимо учитывать следующие рекомендации.

При напряжении сети 220–330 кВ:

использовать в сети одно- и двухцепные ВЛ 220–330 кВ;

при питании ПС по одноцепной ВЛ с двухсторонним питанием общее число промежуточных ПС не должно превышать трех, а длина такой ВЛ, как правило, не должно быть больше 250 км;

присоединять к двухцепной ВЛ 220 кВ с двухсторонним питанием до пяти промежуточных ПС. При этом присоединение ПС рекомендуется принимать по схеме «мостик» или блочной схеме (от одной или двух ВЛ 220 кВ);

проектировать сеть 220–330 кВ внешнего электроснабжения крупных и крупнейших городов с использованием принципа кольцевой конфигурации. В системе электроснабжения таких городов рекомендуется предусматривать сооружение не менее двух ПС 220–330 кВ, через которые осуществляется связь с сетью энергосистемы, а питающие ВЛ рекомендуется прокладывать по разным трассам. При присоединении сети крупных и крупнейших городов к энергосистеме рекомендуется обеспечивать минимальные транзитные перетоки мощности через городскую сеть. Общее количество и пропускная способность линий, связывающих сети таких городов с энергосистемой, рекомендуется выбирать с учетом обеспечения питания городских потребителей без ограничений при отключении двухцепной питающей ВЛ 220 кВ;

выполнять, как правило, ПС 220–330 кВ двухтрансформаторными. При большой концентрации нагрузок ПС 330 кВ могут выполняться с установкой трех — четырех трансформаторов. Установка на ПС одного трансформатора допускается временно при обеспечении резервирования потребителей.

При напряжении сети 110 кВ:

не допускать сооружения новых протяженных ВЛ 110 кВ параллельно существующим ВЛ 220 кВ;

использовать в качестве источников питания сети 110 кВ ПС 220–330/110 кВ, имеющие независимые питающие линии, и шины 110 кВ электростанций;

обеспечивать двухстороннее питание ПС, присоединенных к одноцепной ВЛ 110 кВ. Длина такой ВЛ, как правило, не должна быть более 120 км, а количество присоединяемых промежуточных ПС — более трех. Присоединение к такой ВЛ двухтрансформаторных ПС рекомендуется по схеме «мостик». При однотрансформаторной ПС (первый этап развития двухтрансформаторной ПС) присоединение к линии осуществляется по блочной схеме. Допускается присоединение ПС к одноцепной тупиковой ВЛ 110 кВ только на первом этапе развития сети. При этом резервирование ответственных потребителей должно быть обеспечено по сети вторичного напряжения;

осуществлять применение двухцепных ВЛ с двухсторонним питанием в системах электроснабжения крупных городов, а также в схемах внешнего электроснабжения потребителей транспортных систем (электрифицированные участки железных дорог, продуктопроводов и т. п.). К таким ВЛ рекомендуется присоединение не более пяти промежуточных ПС, с чередованием ПС по схеме «мостик» и блочной схеме;

применять двухцепные тупиковые ВЛ в схемах электроснабжения крупных городов, промузлов, промышленных предприятий и т. п. с присоединением к такой ВЛ до двух ПС 110 кВ. При этом потребители первой категории таких ПС должны резервироваться по сети вторичного напряжения. К двум одноцепным тупиковым ВЛ может быть присоединено до трех ПС.

При напряжении сети 35 кВ:

не допускать сооружения новых протяженных ВЛ 35 кВ параллельно существующим ВЛ 110 кВ и не сооружать новые ВЛ 35 кВ протяженностью свыше 80 км;

оценивать целесообразность сооружения новых ВЛ 35 кВ в габаритах 110 кВ;

рассматривать возможность перевода существующих ВЛ 35 кВ на напряжение 110 кВ;

использовать преимущественно одноцепные ВЛ 35 кВ с питанием от разных ПС 110–220 кВ или разных секций (систем шин) одной ПС.

Трасса ВЛ выбирается по возможности кратчайшей с учетом условий отчуждения земли, вырубки просек, комплексного использования охранной зоны и приближения к дорогам и существующим ВЛ.

Протяженность намечаемых ВЛ при отсутствии более точных данных может быть принята на 20–25 % больше воздушной прямой (большее значение относится к территориям с высокой плотностью застройки, развитой сетью дорог и инженерных коммуникаций, интенсивной хозяйственной деятельностью). В районах городской и промышленной застройки, а также в других сложных случаях длину ВЛ следует принимать с учетом конкретных условий.

Читайте также:  Мощность электродвигателя для стиральной машины вятка

Вблизи промышленных предприятий трассы ВЛ, как правило, располагаются вне зон действия ветра преобладающего направления от источников загрязнения.

На железобетонных опорах сооружаются одноцепные и двухцепные ВЛ 35 и 110 кВ. В последние годы строительство ВЛ 220–500 кВ осуществляется, как правило, на металлических опорах.

Имеется опыт строительства ВЛ 500 кВ в двухцепном исполнении (например, две цепи 500 кВ от Балаковской АЭС, 18 км). Проектные разработки последних лет показали, что использование двухцепных опор 500 кВ не дает существенного снижения материалоемкости (металл, железобетон) по сравнению с одноцепными. Экономический эффект достигается в основном за счет уменьшения полосы отчуждения. Последнее определяет область применения двухцепных ВЛ 500 кВ — участки трассы, где проход двух параллельных одноцепных ВЛ невозможен.

На ВЛ 750—1150 кВ используются металлические опоры. В условиях, когда доставка железобетонных опор на трассу ВЛ затруднена, рекомендуется использовать металлические опоры.

На ВЛ напряжением 35 кВ и выше рекомендуется применять сталеалюминиевые провода. Использование алюминиевых проводов и проводов из алюминиевого сплава обосновывается расчетами. На больших переходах через водные пространства (ущелья) при наличии технической целесообразности в качестве проводов могут применяться стальные канаты.

Обозначения марок проводов для ВЛ приведены ниже

Срок службы алюминиевых и медных проводов составляет 45 лет, проводов марки АЖ и АН — 25 лет.

В последние годы на ВЛ 6-10-35 кВ получили распространение самонесущие изолированные провода (СИП). Последняя конструкция такого провода — СИП-3. Это одножильный самонесущий провод с защитным покровом. Жила выполнена из алюминиевого сплава высокой прочности или из сталеалюминия.

Рекомендуемая область применения проводов различных марок приведена в табл. 3.2.

Окончание табл. 3.2

Ориентировочная ширина коридоров ВЛ, а также площади постоянного отвода земли под опоры ВЛ приведены в табл. 3.3 и 3.4. Критерии определения площадей отвода земли под опоры ВЛ приведены в постановлении Правительства РФ от 11 августа 2003 г. № 486.

Окончание табл. 3.4

Расчетные данные сталеалюминиевых, алюминиевых и проводов из алюминиевых сплавов приведены в табл. 3.5 и 3.6.

Окончание табл. 3.5

Окончание табл. 3.6

Минимальные диаметры проводов ВЛ по условиям короны и радиопомех приведены в табл. 3.7.

Расчетные данные ВЛ 35 кВ и выше со сталеалюминиевыми проводами приведены в табл. 3.8 и 3.9.

Потери активной мощности в продольном сопротивлении схемы замещения ВЛ 110 и 35 кВ можно определять по рис. 3.1. При этом cos ? был принят равным 0,9; при иных значениях cos ? значения потерь мощности умножаются на 0,81/cos 2 ?.

Потери мощности на корону могут быть приняты по данным табл. 3.10.

Нормы продолжительности строительства ВЛ (СНиП 1.04.03–85) и продолжительность проектирования (по данным института «Энергосетьпроект») приведены в табл. 3.11. Практика проектирования последних лет позволяет считать данные табл. 3.11 завышенными.

Окончание табл. 3.11

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

Общие сведения

Общие сведения Символы ФлагЕго цвета были приняты в 1797 г., когда утверждался флаг Циспаданской республики. Триколор (белый, красный и зеленый) выражает идеалы граждан Италии – братство, равенство и правосудие.Итальянский «сапог»Возможно, проживая на территории, похожей

1. Общие сведения

1. Общие сведения

Общие сведения

Общие сведения СправкаПлощадь: 163 610 км? .Наибольшая протяженность с севера на юг: 900 км.Наибольшая протяженность с востока на запад: 330 км.Численность населения: 9 млн. человек.Из них моложе 15 лет: 35%.Плотность населения: 56 человек/км? .Темпы роста населения: 2,1%.Уровень

Общие сведения

Общие сведения В свое время Индия подарила миру рис, хлопок, сахарный тростник, ряд специй, домашнюю птицу, шахматы, математический нуль и десятичную систему исчисления.Сегодня Индия – это одна из ведущих азиатских держав, обладающая разнообразными природными и

Общие сведения

Общие сведения География Сибирь – территория России, занимающая большую часть Северной Азии от Урала на западе до горных хребтов Тихоокеанского водораздела на востоке и от берегов Северного Ледовитого океана на севере до холмистых степей Казахстана и границы с

Общие сведения

Общие сведения География Тюменская область расположена в основном в пределах Западно-Сибирской равнины, и только на западе ее территория имеет четко выраженный естественный рубеж – восточные склоны Уральских гор. В ее состав входят еще два субъекта РФ –

Общие сведения

Общие сведения География Округ расположен в центральной части Западно-Сибирской равнины (площадь – 534,8 тыс. км?). Западная граница округа с Республикой Коми проходит по водораздельным хребтам Уральских гор, на юго-западе округ граничит со Свердловской областью, на юге –

Общие сведения

Общие сведения География Область расположена на юге Западно-Сибирской равнины, в среднем течении Иртыша. Граничит на юге с Казахстаном (протяженность границы 1020 км), на западе и на севере – с Тюменской областью, на востоке – с Новосибирской и Томской областями.

Общие сведения

Общие сведения География Область (178,2 тыс. км?) расположена в юго-восточной части Западно-Сибирской равнины, занимая, главным образом, междуречье Оби и Иртыша, южную часть Васюганской равнины и Барабинскую низменность. На западе она граничит с Омской областью, на севере –

Общие сведения

Общие сведения Географическое положение Томская область расположена в среднем течении реки Оби в юго-восточной части Западно-Сибирской равнины. Ее площадь – 316,9 тыс. км?. 86 % площади области относятся к районам Крайнего Севера и местностям, приравненным к ним, в том

Общие сведения

Общие сведения География Кемеровская область (95,5 тыс. км?) расположена на юго-востоке Западной Сибири, на стыке Западно-Сибирской равнины и гор Южной Сибири. С севера на юг на 520 км и с запада на восток – на 300 км. Большая, центральная часть области занимает Кузнецкую

Общие сведения

Общие сведения География Красноярский край простирается от Северного Ледовитого океана до южных склонов Алтайско-Саянской горной системы. Площадь – 2339,7 тыс. км?. Это второй по величине субъект РФ после республики Саха (Якутия). На севере края находится Таймырский

Общие сведения

Общие сведения География Округ расположен на территории Красноярского края, в зоне Крайнего Севера России, в пределах Среднесибирского плоскогорья, в бассейне правых притоков Енисея – Подкаменной и Нижней Тунгуски. Площадь округа – 767,6 тыс. км?. Округ граничит с

Общие сведения

Общие сведения География Округ полностью расположен за пределами Полярного круга (площадь – 876,9 тыс. км?). На востоке граничит с Республикой Саха (Якутия), на юге – с Эвенкией и Красноярским краем, на западе – с Ямало-Ненецким АО. С севера омывается водами Карского моря и

Общие сведения

Общие сведения География Хакасия расположена на юго-западе Восточной Сибири в левобережной части бассейна Енисея. Территория Хакасии (61,9 тыс. км?) занимает значительную часть Минусинской котловины. Протяженность с севера на юг 460 км, с запада на восток в наиболее

Общие сведения

Общие сведения География Тува расположена в центре Азии, на юге Сибири, в верховьях Енисея. Входит в Восточно-Сибирский экономический регион. Граничит на юге с Монголией, на западе – с Республикой Алтай, на севере – с Хакасией, Красноярским краем, на северо-востоке – с

Источник