Меню

Коэффициент стабилизации стабилизатора определение

Параметры стабилизаторов

Стабилизатор — это устройство, предназначенное для автоматического поддержания в заданных пределах напряжения или тока при изменении входного напряжения, тока нагрузки, температуры, давления, влажности, вибрации и других дестабилизирующих факторов.

Основными параметрами стабилизаторов являются:

  1. Коэффициент стабилизации
  2. Нестабильность выходного напряжения
  3. Внутреннее сопротивление стабилизатора
  4. Температурная нестабильность
  5. Коэффициент сглаживания пульсаций
  6. Коэффициент полезного действия

Коэффициент стабилизации выходного напряжения можно определить как отношение нестабильности выходного напряжения к нестабильности входного напряжения:

Нестабильность выходного напряжения (статическая ошибка) измеряется как отношение изменения выходного напряжения к его номинальному значению:

Измерение нестабильности выходного напряжения производится при постоянной нагрузке (ток нагрузки не должен изменяться).

Внутреннее сопротивление стабилизатора можно определить как

Измерение внутреннего сопротивления стабилизатора производится при неизменном входном напряжении ().

Нестабильность выходного напряжения в зависимости от тока нагрузки. Этот параметр применяется вместо внутреннего сопротивления.

Температурная нестабильность Для выходного напряжения она определяется следующим образом:

Коэффициент сглаживания пульсаций вычисляется следующим образом:

где Um — амплитуда пульсаций.

Коэффициент полезного действия определяется как отношение выходной мощности к мощности, потребляемой стабилизатором:

Следует отметить, что мы перечилили только основные параметры стабилизаторов. Для стабилизаторов переменного тока дополнительно оговариваются требования по стабильности частоты сети переменного тока, нестабильность входного импеданса и его реактивной составляющей, коэффициент мощности. Кроме того важными параметрами являются габариты, масса и надежность стабилизатора, но эти требования относятся уже к любому радиоэлектронному устройству.

Наибольший вклад в общую нестабильность выходного напряжения вносят нестабильности по напряжению, току и температуре и, в зависимости от этого, получается результирующая нестабильность стабилизатора:

Cтабилизаторы классифицируются в зависимости от стабильности на стабилизаторы:

  • низкой точности δ = 2 . 5%
  • средней точности δ = 0,5 . 2%
  • высокой точности δ = 0,1 . 0,5%
  • прецизионные δ Дата последнего обновления файла 07.06.2015

  1. Сажнёв А.М., Рогулина Л.Г., Абрамов С.С. “Электропитание устройств и систем связи”: Учебное пособие/ ГОУ ВПО СибГУТИ. Новосибирск, 2008г. – 112 с.
  2. Алиев И.И. Электротехнический справочник. – 5-е издание, стереотипное. – М.: ИП РадиоСофт, 2010. – 384с.
  3. Гейтенко Е.Н. Источники вторичного электропитания. Схемотехника и расчёт. Учебное пособие. – М., 2008. – 448 с.
  4. Электропитание устройств и систем телекоммуникаций: Учебное пособие для вузов / В.М.Бушуев, В.А. Деминский, Л.Ф. Захаров и др. – М.,2009. – 384 с.
  5. Денисов А.И., Зволинский В.М., Руденко Ю.В. Вентильные преобразователи в системах точной стабилизации. – К.: Наукова думка, 1997. – 250 с.

Вместе со статьей «Параметры стабилизаторов» читают:

Источник

Стабилизаторы напряжения: схемы, параметры, принцип работы

Содержание

Параметры стабилизаторов напряжения

Важнейшими параметрами стабилизатора напряжения являются коэффициент стабилизации K ст, выходное сопротивление R вых и коэффициент полезного действия η.

Коэффициент стабилизации определяют из выражения K ст= [ ∆u вх/ u вх] / [ ∆u вых/ u вых]

где u вх, u вых — постоянные напряжения соответственно на входе и выходе стабилизатора; ∆u вх — изменение напряжения u вх; ∆u вых — изменение напряжения u вых, соответствующее изменению напряжения ∆u вх.

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного. У простейших стабилизаторов величина K ст составляет единицы, а у более сложных — сотни и тысячи.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

Таким образом, коэффициент стабилизации — это отношение относительного изменения напряжения на входе к соответствующему относительному изменению напряжения на выходе стабилизатора.

Выходное сопротивление стабилизатора определяется выражением R вых= | ∆u вых/ ∆i вых|

где ∆u вых— изменение постоянного напряжения на выходе стабилизатора; ∆i вых— изменение постоянного выходного тока стабилизатора, которое вызвало изменение выходного напряжения.

Выходное сопротивление стабилизатора является величиной, аналогичной выходному сопротивлению выпрямителя с фильтром. Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки. У простейших стабилизаторов величина R вых составляет единицы Ом, а у более совершенных — сотые и тысячные доли Ома. Необходимо отметить, что стабилизатор напряжения обычно резко уменьшает пульсации напряжения.

Коэффициент полезного действия стабилизатора η ст — это отношение мощности, отдаваемой в нагрузку Р н, к мощности, потребляемой от входного источника напряжения Р вх: η ст = Р н / Р вх

Традиционно стабилизаторы разделяют на параметрические и компенсационные.

Интересное видео о стабилизаторах напряжения:

Параметрические стабилизаторы

Являются простейшими устройствами, в которых малые изменения выходного напряжения достигаются за счет применения электронных приборов с двумя выводами, характеризующихся ярко выраженной нелинейностью вольт-амперной характеристики. Рассмотрим схему параметрического стабилизатора на основе стабилитрона (рис. 2.82).

Проанализируем данную схему (рис. 2.82, а), для чего вначале ее преобразуем, используя теорему об эквивалентном генераторе (рис. 2.82, б). Проанализируем графически работу схемы, построив на вольт-амперной характеристике стабилитрона линии нагрузки для различных значений эквивалентного напряжения, соответствующих различным значениям входного напряжения (рис. 2.82, в).

Из графических построений очевидно, что при значительном изменении эквивалентного напряжения u э (на ∆u э), а значит, и входного напряжения u вх, выходное напряжение изменяется на незначительную величину ∆u вых.

Абрамян Евгений Павлович Доцент кафедры электротехники СПбГПУ

Причем, чем меньше дифференциальное сопротивление стабилитрона (т. е. чем более горизонтально идет характеристика стабилитрона), тем меньше ∆uвых.

Определим основные параметры такого стабилизатора, для чего в исходной схеме стабилитрон заменим его эквивалентной схемой и введем во входную цепь (рис. 2.82, г) источник напряжения, соответствующий изменению входного напряжения ∆u вх (на схеме пунктир):

K ст= ( ∆u вх/ u вх) : ( ∆u вых/ u вых) Так как обычно R н>> r д Следовательно, K ст≈ u вых / u вх· [ ( r д+ R 0) / r д]

Обычно параметрические стабилизаторы используют для нагрузок от нескольких единиц до десятков миллиампер. Наиболее часто они используются как источники опорного напряжения в компенсационных стабилизаторах напряжения.

Компенсационные стабилизаторы

Представляют собой замкнутые системы автоматического регулирования. Характерными элементами компенсационного стабилизатора являются источник опорного (эталонного) напряжения (ИОН), сравнивающий и усиливающий элемент (СУЭ) и регулирующий элемент (РЭ).

Напряжение на выходе стабилизатора или некоторая часть этого напряжения постоянно сравнивается с эталонным напряжением.

В зависимости от их соотношения сравнивающим и усиливающим элементом вырабатывается управляющий сигнал для регулирующего элемента, изменяющий его режим работы таким образом, чтобы напряжение на выходе стабилизатора оставалось практически постоянным.

В качестве ИОН обычно используют ту или иную электронную цепь на основе стабилитрона, в качестве СУЭ часто используют операционный усилитель, а в качестве РЭ — биполярный или полевой транзистор.

Чаще всего регулирующий элемент включают последовательно с нагрузкой. В этом случае стабилизатор называют последовательным (рис. 2.83, а).

Иногда регулирующий элемент включают параллельно нагрузке, и тогда стабилизатор называют параллельным (рис. 2.83, б. Здесь СУЭ и ИОН с целью упрощения не показаны). В параллельном стабилизаторе используется балластное сопротивление R б, включаемое последовательно с нагрузкой.

В зависимости от режима работы регулирующего элемента стабилизаторы разделяют на непрерывные и импульсные (ключевые, релейные).

В непрерывных стабилизаторах регулирующий элемент (транзистор) работает в активном режиме, а в импульсных — в импульсном.

Рассмотрим типичную принципиальную схему непрерывного стабилизатора (рис. 2.84, а).

Эта схема соответствует приведенной выше структурной схеме последовательного стабилизатора. Для того чтобы выполнить наиболее просто анализ этой схемы на основе тех допущений, которые были рассмотрены при изучении операционного усилителя,изобразим эту схему по-другому. При этом цепи питания операционного усилителя для упрощения рисунка изображать не будем.

Из схемы (рис. 2.84, б) очевидно, что на элементах R2, R3, DA и VT построен неинвертирующий усилитель на основе ОУ с выходным каскадом в виде эмиттерного повторителя на транзисторе VT, а входным напряжением для него является выходное напряжение параметрического стабилизатора напряжения на элементах R1 и VD. В соответствии с указанными выше допущениями получаем:

Подставляя выражение для i R2 в предыдущее уравнение, получим − u ст/ R 3· R 2= u ст – u вых. Следовательно, u вых = u ст· ( 1 + R 2/ R 3)

Последнее выражение в точности повторяет соответствующие выражения для неинвертирующего усилителя (входным напряжением является напряжение u ст).

Полезно отметить, что ООС охватывает два каскада — на операционном усилителе и на транзисторе. Рассматриваемая схема является убедительным примером, демонстрирующим преимущество общей отрицательной обратной связи по сравнению с местной.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

Основным недостатком стабилизаторов с непрерывным регулированием является невысокий КПД, поскольку значительный расход мощности имеет место в регулирующем элементе, так как через него проходит весь ток нагрузки, а падение напряжения на нем равно разности между входным и выходным напряжениями стабилизатора.

В конце 60-х годов стали выпускать интегральные микросхемы компенсационных стабилизаторов напряжения с непрерывным регулированием (серия К142ЕН). В эту серию входят стабилизаторы с фиксированным выходным напряжением, с регулируемым выходным напряжением и двухполярным и входным и выходным напряжениями. В тех случаях, когда через нагрузку необходимо пропускать ток, превышающий предельно допустимые значения интегральных стабилизаторов, микросхему дополняют внешними регулирующими транзисторами.

Некоторые параметры интегральных стабилизаторов приведены в табл. 2.1, а вариант подключения к стабилизатору К142ЕН1 внешних элементов — на рис. 2.85.

Резистор R предназначен для срабатывания защиты по току, а R 1 — для регулирования выходного напряжения. Микросхемы К142УН5, ЕН6, ЕН8 являются функционально законченными стабилизаторами с фиксированным выходным напряжением, но не требуют подключения внешних элементов.

Импульсные стабилизаторы напряжения в настоящее время получили распространение не меньшее, чем непрерывные стабилизаторы.

Благодаря применению ключевого режима работы силовых элементов таких стабилизаторов, даже при значительной разнице в уровнях входных и выходных напряжений можно получить КПД, равный 70 − 80 %, в то время как у непрерывных стабилизаторов он составляет 30 − 50%.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

В силовом элементе, работающем в ключевом режиме, средняя за период коммутации мощность, рассеиваемая в нем, значительно меньше, чем в непрерывном стабилизаторе, так как хотя в замкнутом состоянии ток, протекающий через силовой элемент, максимален, однако падение напряжения на нем близко к нулю, а в разомкнутом состоянии ток, протекающий через него, равен нулю, хотя напряжение максимально. Таким образом, в обоих случаях рассеиваемая мощность незначительна и близка к нулю.

Малые потери в силовых элементах приводят к уменьшению или даже исключению охлаждающих радиаторов, что значительно уменьшает массогабаритные показатели. Кроме того, использование импульсного стабилизатора позволяет в ряде случаев исключить из схемы силовой трансформатор, работающий на частоте 50 Гц, что также улучшает показатели стабилизаторов.

К недостаткам импульсных источников питания относят наличие пульсаций выходного напряжения.

Рассмотрим импульсный последовательный стабилизатор напряжения (рис. 2.86).

Ключ S периодически включается и выключается схемой управления (СУ) в зависимости от значения напряжения на нагрузке. Напряжение на выходе регулируют, изменяя отношение t вкл / t выкл, где t вкл, t выкл — длительности отрезков времени, на которых ключ находится соответственно во включенном и выключенном состояниях. Чем больше это отношение, тем больше напряжение на выходе.

В качестве ключа S часто используют биполярный или полевой транзистор.

Диод обеспечивает протекание тока катушки индуктивности тогда, когда ключ выключен и, следовательно, исключает появление опасных выбросов напряжения на ключе в момент коммутации. LC-фильтр снижает пульсации напряжения на выходе.

Ещё одно интересное видео о стабилизаторах:

Источник



Коэффициент стабилизации стабилизатора определение

Хочешь узнать ответ

Стабилизатор применяется для обеспечения нагрузки стабильным, заданным напряжением, независимо от скачков и колебаний напряжения питания.

Основными параметрами стабилизатора напряжения являются следующие:

— коэффициент стабилизации Кст

— выходное сопротивление Rвых

— коэффициент полезного действия h

— температурный коэффициент ТКН

Коэффициент стабилизации — это отношение относительного изменения напряжения на входе стабилизатора к соответствующему относительному изменению напряжения на его выходе (при этом Rн считаем постоянным).

Чем больше коэффициент стабилизации, тем меньше изменяется выходное напряжение при изменении входного.

Выходное сопротивление [Ом] — это отношение изменения напряжения на выходе стабилизатора к изменению выходного тока (тока нагрузки), которое вызвало изменение выходного напряжения (при этом Uвх считаем постоянным).

Чем меньше выходное сопротивление, тем меньше изменяется выходное напряжение при изменении тока нагрузки.

Коэффициент полезного действия (КПД) [%] — это отношение мощности, отдаваемой в нагрузку, к мощности, потребляемой от источника питания.

Если учесть, что Pвх=Pн+Pст, где Pн — мощность, рассеиваемая нагрузкой, а Pст — мощность, рассеиваемая стабилизатором, то можно записать эту формулу по другому:

Температурный коэффициент (ТКН) [%/ 0 C] — это отношение относительного изменения выходного напряжения стабилизатора к вызвавшему его изменению температуры окружающей среды.

Источник

Читайте также:  Поперечной устойчивости стабилизатор ssangyong actyon new