Меню

Характеристика кпд от мощности генератора

Зависимость мощности и КПД генератора

КПД и мощность генератора это взаимосвязанные вещи. И судя по всем расчётам и формулам, а также по реальным данным прокрутки генераторов на нагрузку, можно увидеть что максимальная мощность генератора когда его напряжение просаживается ровно на 50% от напряжения без нагрузки. При всех других вариантах, когда напряжение генератора падает более 50% или менее, мощность генератора падает.

КПД генератора тоже зависит от падения напряжения, и самый высокий КПД при самой маленькой просадке напряжения. Соответственно чем больше просадка по напряжению тем ниже КПД генератора. Генератор и нагрузку можно представить как два сопротивления в замкнутой цепи, и потреблять больше энергии будет то сопротивление которое выше, так-как на нём меньше падение напряжения при равном токе во всей цепи.

Катушки генератора, то-есть его обмотка по сути работает сама на себя, а нагрузка является лишь проводником замыкающим концы обмоток генератора. Обмотка генератора является также и потребителем своей собственной энергии. По этому катушки становятся магнитами и сопротивляются магнитному полю магнитов, от этого появляется нагрузка при вращении генератора. Но сколько энергии потребляет обмотка генератора, а всё по закону Ома. Потребление обмотки зависит от падения напряжения и тока протекающего через обмотку.

Так к примеру если падение напряжения генератора составило 20 вольт, а сопротивление его обмотки 1,5 Ом, то ток цепи будет равен падению напряжения делённого на сопротивление, и тогда 20v:1.5om=13.3 A. Соответственно умножаем этот ток на напряжение, которое упало на обмотке и получим ту мощность которую потребляет обмотка генератора. То-есть 20v*13.3A=266 Watt.

К примеру мы заряжаем аккумулятор, и его напряжение при заряде 14 вольт. Напряжение генератора упало на 20 вольт, значит оно было в холостую 34 вольта, и падение составило 58%. И тогда мощность потребляемая аккумулятором составит 14*13.33=186 ватт. То-есть 186 ватт жрёт аккумулятор, а 266 ватт жрёт обмотка генератора создавая магнитное поле. Общая мощность которую потрбляет вся эта связка генератор+АКБ равна 266+186=452 ватта. КПД генератора соответственно 41%. Собственно по-этому винт для ветрогенератора в этом случае должен иметь большой запас по мощности, более чем в два раза мощней чем та мощность что выходит из генератора.

Читайте также:  Как увеличить мощность процессора через биос

Активное сопротивление потребителя, в данном случае АКБ при этом составит, 14V поделённое 13.3A=1.05 Ом.

Вариант второй: Допустим напряжение генератора падает на 15%. Какой будет его КПД в процентах?, и его мощность в процентах от максимально возможной?. Если падение напряжения составило 15% то это значит что сопротивление нагрузки выше чем сопротивление обмотки генератора. Какое оно это сопротивление? Напряжение делённое на ток является сопротивлением, а ток зависит от падения напряжения поделённого на сопротивление.

Пускай будет те-же 34 вольта в холостую у генератора, и его сопротивление 1.5 Оm. Напряжение упало на 15% и составило 25.5 вольт, разница 34-25.5=8,5 вольт. Ток равен падению напряжения умноженного на сопротивление. Тогда 8.5:1.5=5.6А — ток в цепи, 8.5*5.6 это 47.6 ватта, то-есть 47.6 ватт потребление генератора (падает на обмотке генератора в виде создания электрического поля). А потребление нагрузки равно её току и напряжению, это значит 25.5v*5.6a=142.8Watt. Общее потребление всей связки генератор и нагрузка равно 47.6+142.8=190.4 ватта. В этом случае кпд генератора 75%. А сопротивление нагрузки 25.5:5.6=4.5om

Что-же из этого всего следует, а следует прямая зависимость КПД генератора и его мощности от падения напряжения на нём в процентном соотношении. КПД генератора прямо пропорционален падению напряжения на нём. Мощность генератора пропорциональна падению напряжения, и самая высокая мощность когда падение напряжения составляет 50%

Таким образом если хотите с генератора всегда снимать максимум мощности, при любых оборотах то нужно напряжение держать на уровне 50%, но КПД генератора в таком режиме всегда будет равен 50%.

На компетентность и правдивость изложенной информации в статье я не претендую. Это лишь моё видение картины на данный момент моего развития в этой теме, и я вполне могу заблуждаться и сделать неверные выводы из всего этого. Вам решать какие делать выводы из этого. Но если я заблуждаюсь насчёт КПД регенератора, когда говорю что если сопротивление генератора выше то он сам потренбляет больше энергии чем отдаёт нагрузке. То спросите себя куда девается энергия, механическая энергия если КПД генератора например 80%. Например если генератор на 3кВт и его КПД 80% то значит что порядка 800 ватт у нас потери КПД. Где эти потери, в чём они выражаются? Неужели всё уходит в нагрев генератора, целых 800 ватт, да обмотка расплавится и сгорит если там будет выделяться тепла почти 1 кВт, от генератора как от печки тогда можно помещение отапливать. А если КПД 50% то страшно представить сколько там на нагрев пойдёт.

Читайте также:  Усилитель мощности cambridge audio

Нет, не на нагрев уходит мощность, а на создание магнитного поля, катушки становятся электромагнитами и потребляют энергию сопротивляясь вращению ротора. Именно в магнитное поле обмотки генератора уходит основная часть энергии, которая падает на генераторе. Ниже видео где я попытался объяснить описанное в статье.

Источник

КПД бензиновых и дизельных электрогенераторов

Невысокая стоимость, компактные размеры и малая шумность от работающей установки делают бензиновое оборудование популярными. Однако часто потребители задают вопрос: так ли выгодна покупка данного аппарата? Выбор зависит от целей создания автономного электроснабжения. Если для резервного источника энергии, то оптимально подойдет бензиновый генератор. Для постоянного обеспечения электротоком рационально приобретать дизельгенерирующую электроустановку.

Главным отличием агрегатов является коэффициент полезного действия. Данный показатель характеризует бензиновые генераторы не с лучшей стороны: их КПД в среднем составляет 0,18%-0,24%. Производители этого оборудования постоянно ломают голову над повышением коэффициента полезного действия. В последнее время удалось совершить качественный скачок при переходе в компоновке двигателя на верхние клапаны. Система OHV значительно уменьшает площадь камеры сгорания, что снижает и сам нагрев ДВС. Наряду с этим достигнуто увеличение степени сжатия до 7-9 единиц, что сократило потребление топлива. Но это предел увеличения КПД.

Существует теория, что прорыв можно совершить, отказавшись от использования карбюратора и заменив его на систему впрыска с использованием электронного управления. Но сегодня стоимость даже самой простой из них равна цене всего двигателя, вследствие чего установка сделает аппарат очень дорогим и его приобретение станет экономически невыгодным. Более перспективным направлением в плане высокого коэффициента полезного действия считаются дизельные электрогенерирующие установки, КПД которых варьируется в диапазоне от 0,70% до 0,80%. Чтобы рассмотреть более подробно, в чем же заключается выгода таких показателей, возьмем конкретный пример.

Согласно паспортным данным, дизельный и бензиновый генераторы, номинальная мощность которых составляет 2 кВт, расходуют 280г/кВт*ч и 395г/кВт*ч соответственно. То есть, ДГУ потребляет топлива в 1.4 раза! При минимальной нагрузке расход увеличивается на 10%, что повышает выгоду до 1,87 раза.

Источник



Читайте также:  Зона субмаксимальная мощность мышечной работы

Коэффициент полезного действия

Зная потери в машине, можно определить коэффициент полез­ного действия (к. п. д.) машины.

а) Коэффициент полезного действия генератора постоянного тока.

Для генераторов к. п. д. представляет собой отношение электрической полезной мощности к механической мощности на валу и определяется по формуле:

Механическую мощность на валу генератора можно представить как:

Электрическая полезная мощность генератора определяется по формуле:

где: ∑P — сумма всех потерь в машине;

U — напряжение на зажимах генератора;

I — ток, отда­ваемый генератором в сеть.

Тогда для генератора коэффициент полезного действия можно определить по формулам:

б) Коэффициент полезного действия двигателя постоянного тока.

Коэффициентом полезного действия двигателя постоянного тока называется отношение механической мощности на валу двигателя Р2 к подводимой к двигателю электрической мощности Р1.

В двигателях подводимая мощность Р1 определяется по формуле:

U — напряжение на зажимах двигателя;

I — ток, потребляемый двигателем.

Механическую мощность на валу двигателя можно представить как:

где: ∑P — сумма всех потерь в машине;

Тогда для двигателя коэффициент полезного действия можно определить по формулам:

Так как к. п. д. машины зависит от суммы потерь, то он — вели­чина непостоянная, т. е. зависит от нагрузки.

При х. х. машин, когда полезная мощность равна нулю, к. п. д. = 0.

По мере увеличения нагрузки к. п. д. машины быстро увеличивается.

Наибольшее значе­ние он имеет при нагрузке, равной (0,8-1) Рном когда постоянные потери равны переменным.

При значительных перегрузках вслед­ствие увеличения потерь в сопротивлениях цепи якоря к. п. д. снова снижается.

Рис.20.1. Зависимость к.п.д. машины от нагрузки

Современные элек­трические машины имеют высокий к. п. д.

Так, для машин постоян­ного тока:

мощностью 10 кВт к. п. д. η = 0,83- 0,87;

мощностью 100 кВт; η =0,884-0,93;

мощностью 1000 кВт η = 0,92-0,96.

Маши­ны малой мощности имеют меньшее значе­ние к. п. д., например для двигателя мощ­ностью 10 Вт η = 0,34-0,4

Дата добавления: 2014-12-24 ; просмотров: 1887 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник