Меню

Каким способом можно измерить активную мощность

Лекция № 10. Измерение мощности

Содержание лекции: принципы, методы, приборы и схемы измерения мощности.

Цель лекции: изучить методы и приборы измерения мощности.

Измерение мощности – определение значения электрической мощности. При измерении мощности следует учитывать существование различных составляющих мощности: активную, реактивную и полную мощности. К измерению мощности относят во многих случаях измерение коэффициента мощности.

Измерение мощности постоянного тока – определение электрической активной мощности в цепях постоянного тока.

На основе измерения тока и напряжения (аналогично определениюсопротивления путём измерения тока и напряжения) определяется активная мощность постоянного тока

. (10.1)

И на основе измерения эффективных значений переменного напряжения и тока определяется полная мощность

. (10.2)

Так как любое средство измерений имеет собственное потребление мощности, то при любой схеме измерения возникает неизбежная систематическая погрешность, которая при точных измерениях, особенно при измерении малых значений мощности, должна учитываться и корректироваться (см. таблицу 10.1)

Таблица 10.1 – Определение мощности путем измерения тока и напряжения

Мощность, выделяемая источником, Р с Схема измерения Мощность, потребляемая нагрузкой, Р н
Вентильное подключение по напряжению Вентильное подключение по току
Вентильное подключение по току Вентильное подключения по напряжению

1) U, I – измеренные значения напряжения и тока;

2) – мощность потребляемая вольтметром, R В – его внутреннее сопротивление;

3) – мощность, потребляемая амперметром; R I – его внутреннее сопротивление.

Для измерения тока и напряжения на постоянном токе используются приборы магнитоэлектрической системы (ИМ МЭС) с шунтами и добавочными сопротивлениями.

Для измерения тока и напряжения на переменном токе используются приборы электромагнитной и электродинамической систем. На рисунке 10.1 представлена схема устройства ИМ электродинамической системы (ИМ ЭДС).

1 – неподвижные катушки; 2 – подвижная рамка.

Рисунок 10.1 – Электродинамический измерительный механизм

Весьма просто измерение мощности можно произвести при помощи ваттметра непосредственной оценки, выполненного на базе электродинамического измерительного механизма (см. рисунок 10.2)

Рисунок 10.2 – Схема включения ваттметра

Уравнение шкалы ваттметра при измерении мощности имеет вид: на постоянном токе

на переменном токе

где – коэффициент пропорциональности.

Шкала такого ваттметра – линейная. Например, ваттметр Д539 класса точности 0.5 имеет шкалу на 150дел, номинальный ток параллельной цепи 3мА, и она рассчитана на 150В , последовательная катушка рассчитана на ток 5А и

Обычно такие ваттметры называется косинусными, потому что они градуируются при . Постоянная ваттметра равна

, (10.5)

где – соответственно, номинальный ток и напряжение;

– номинальное число делений.

Существует несколько методов измерения мощности в сетях переменного тока. При произвольной нагрузке в цепи переменного тока только активная составляющая тока , иначе говоря, часть полной мощности, определяемая коэффициентом мощности, является полезной (используемой)

cosφ = S cosφ. (10.6)

Метод одного ваттметра применяется для: при симметричной нагрузке мощности в фазах одинаковы. Поэтому достаточно измерить мощность в какой – либо одной фазе (см. рисунок 10.3) и утроить результат.

Рисунок 10.3 – Схема измерения мощности одним ваттметром в электрической сети высокого напряжения

Общая активная мощность трехфазной сети равняется сумме мощностей трех фаз

Их точное определение осуществляется путем одновременного измерения мощности в каждой фазе с помощью трех отдельных ваттметров. В четырехпроводных системах цепи напряжения подключаются (в данном случае через добавочные сопротивления) к нулевому проводу (см. рисунок 10.4, а). В трехпроводных системах три цепи напряжения присоединяются нулевыми точками сопротивлений к искусственной нулевой точке (см. рисунок 10.4, б). четырехпроводная сеть; б – трехфазная трехпроводная сеть.

Читайте также:  Прямая рассеиваемая мощность диода

а – трехфазная Рисунок 10.4 – Метод трех ваттметров. Измерение активной мощности в произвольно нагруженных сетях

Самой распространенной схемой для электрических сетей переменного тока на 3 – 10 кВ является схема измерения мощности по методу двух приборов (см. рисунок 10.5)

Источник

Измерение активной мощности в цепях переменного тока

date image2015-01-30
views image8408

facebook icon vkontakte icon twitter icon odnoklasniki icon

Измерение активной мощности в однофазной цепи производится одноэлементными ваттметрами. Расширение диапазонов измерения в цепях переменного тока осуществляется с помощью измерительных трансформаторов тока и напряжения.

Измерение мощности методом одного прибора. При использовании метода одного прибора измерение мощности осуществляется с помощью одноэлементного ваттметра. Метод применяется при измерении мощности в однофазных цепях и симметричных трехфазных цепях (комплексные сопротивления фаз одинаковы). И в том и в другом случае обмотка напряжения ваттметра включается на фазное напряжение, а обмотка тока включается в рассечку провода какой-либо фазы. На рис. 11.8 показано включение одноэлементного ваттметра в однофазную цепь переменного тока. Пренебрегая методической погрешностью, запишем показания ваттметра:

где U и I – действующие значения напряжения и тока нагрузки; j = (U,I).

Показание ваттметра в этом случае будет соответствовать мощности одной фазы. Для получения мощности всей трехфазной цепи необходимо показание ваттметра утроить, т.е. P = 3PPW.

Включение неподвижной катушки ваттметра последовательно с нагрузкой возможно только при токах нагрузки 10-20 А. При больших токах нагрузки неподвижную катушку ваттметра включают через трансформатор тока (ТА). При измерении в цепях высокого напряжения (свыше 600 В) подвижную катушку ваттметра включают не непосредственно в измерительную цепь, а через трансформатор напряжения (ТV), а неподвижную катушку ваттметра – через ТА (независимо от значения тока нагрузки).

Значение измеряемой мощности определяют по показанию ваттметра, умноженному на произведение коэффициентов трансформации ТV и ТА:

где Рх – измеренное значение активной мощности в цепи нагрузки; РРW – показание ваттметра; KUном, KIном – номинальные коэффициенты трансформации, соответственно, ТV и ТА.

Измеренное значение мощности будет отличаться от действительного значением погрешности в передаче значений напряжения и тока, а также угловых погрешностей трансформаторов. Электродинамические ваттметры изготовляют многопредельными, высоких классов точности (0.1; 0.2) с диапазоном измеряемых мощностей от десятых долей Вт до 3 – 6 кВт. При грубых измерениях в качестве щитовых приборов применяют ферродинамические ваттметры.

Следует отметить, что измерение активной мощности одноэлементными ваттметрами осуществляется только в лабораторной практике. При технических измерениях в промышленных условиях для измерения активной мощности в трехфазных трехпроводных цепях применяют двухэлементные ваттметры, а в четырехпроводных цепях – трехэлементные.

Кроме электродинамических ваттметров для измерения мощности применяются электронные выпрямительные, термоэлектрические, цифровые и др. ваттметры.

Измерение мощности методом двух приборов. Метод двух приборов используется при измерении мощности в трехфазной трехпроводной сети с помощью двух одноэлементных ваттметров. Метод дает правильные результаты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. Кроме того, метод двух приборов применяется для включения элементов двухэлементного ваттметра при измерении с помощью его мощности в трехфазной трехпроводной сети

Читайте также:  Симистор ку208 регулятор мощности

На рис. 11.9 изображена схема включения двух одноэлементных ваттметров. Обычно токовая обмотка одного ваттметра, например, PW1, включается в фазу А, а токовая обмотка другого ваттметра – PW2 – в фазу С. Обмотки напряжения ваттметров включаются на линейные напряжения так, как это показано на рис. 11.9. При измерении мощности с использованием метода двух приборов общая мощность цепи равна алгебраической сумме показаний ваттметров

где j — фазовый сдвиг между напряжением и током в фазе.

Мощность любой 3-х фазной системы вычисляется по формуле:

Таким образом, сумма показаний ваттметров PW1 и PW2 есть не что иное, как мощность трехфазной цепи.

Измерение мощности методом трех приборов. Метод трех приборов применяется при измерении мощности в трехфазной четырехпроводной цепи (при этом используются три одноэлементных ваттметра, включаемые в каждую фазу). Так же как и метод двух приборов, метод трех приборов дает правильные результаты независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. По схеме, реализующей метод трех приборов, включаются также элементы трехэлементных трехфазных ваттметров. Очевидно, что для нахождения мощности 3-х фазной четырехпроводной цепи необходимо взять алгебраическую сумму всех ваттметров:

Источник



Активная мощность цепи переменного тока

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Прибор Мощность бытовых приборов, Вт/час
Зарядное устройство 2
Люминесцентная лампа ДРЛ От 50
Акустическая система 30
Электрический чайник 1500
Стиральной машины 2500
Полуавтоматический инвертор 3500
Мойка высокого давления 3500

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Читайте также:  Конвейер ленточный мощность двигателя

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Q L = U LI = I 2 x L

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: x L = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

Источник