Меню

Как повысить коэффициент мощности сетей

Как повысить коэффициент мощности?

Коэффициент мощности

cos φ ( φ — сдвиг фаз между I (сила тока) и U (напряжение)) — характеризует потребителя переменного напряжения относительно наличия реактивной составляющей. Чем меньше значение коэффициента мощности, тем больше могут вносится нелинейных искажений, тем больше нагреваются провода, увеличиваются потери на трансформаторах, увеличивается плата за электроэнергию и т.д. Хорошие показатели — 0.8-:-1, удовлетворительные — 0.65-:-0.8. Работа при коэффициенте ниже 0.5 не рекомендуется. Чтобы повысить этот коэффициент, используется процесс его коррекции power factor correction (есть пассивный (PPFC) и активный корректор коэффициента мощности (APFC)). На это следует обращать внимание при выборе совместимого с БП компьютера устройства типа ИБП или инвертора.

Рассчитать мощность для гармонических I (сила тока) и U (напряжение) можно, используя формулы:

4) S=U*I= P 2 +Q 2

где Q— реактивная, S — полная, P — активная мощность.

Для коррекции реактивной составляющей полной мощности против индуктивной реактивной составляющей параллельно цепи питания необходимо подключить конденсатор. Обычно используются конденсаторные установки, это позволяет платить меньше за реактивную, то есть не «используемую» мощность.

С целью коррекции нелинейности потребления тока используется дроссель с большой индуктивностью последовательно подключенный к питаемой нагрузке. Он позволяет сгладить импульс и убрать основную (низшую) гармонику.

Бороться с несинусоидальностью (высокочастотные гармоники), способной уменьшать коэффициент мощности, ограничивать применение конденсаторов для борьбы с этим процессом, необходимо с помощью:

— фильтрокомпенсирующих устройств (L-С цепочка)

— подключения нелинейной нагрузки через отдельные трансформаторы

— уменьшения сопротивления питающего участка

— подключения к более мощной системе подачи электроэнергии

Отдельная статья посвящена вопросам повышения качества напряжения.

Тяжело представить, что на самом деле происходит в сети без схематического изображения, поэтому:

Напряжение и ток синфазны (φ=0°, cos φ=1) полностью активная нагрузка. Вся энергия переходит в активную мощность потребляемую нагрузкой.

Напряжение и ток имеют фазовый сдвиг φ=45° (сos φ=0,71) — нагрузка имеет две составляющие: активную, реактивную. Часть мощности уходит обратно в сеть в течение цикла φ.

25. Получение трёхфазной ЭДС. Соединение обмоток генератора в звезду и треугольник.

Каждая фаза трехфазного генератора может являться источником питания для однофазного приемника. В этом случае схема электрической цепи имеет вид, изображенный на рисунке, то есть каждая фаза работает отдельно от других, хотя в целом цепь является трехфазной. Это трехфазная независимая система.

ЭДС любой обмотки генератора представляет собой разность потенциалов начала и конца этой обмотки. При этом потенциал одной какой-либо точки (или начала, или конца обмотки) можно считать равным нулю. Тогда комплексный потенциал другой точки будет иметь точно определенное значение.

Принимая равными потенциалы точек, соответствующих концам X, Y и Z обмоток фаз генератора, можно объединить их в одну точку N. Концы фаз приемников (ZA, ZB и ZC) также соединяем в одну точку n. Такое соединение обмоток генератора называетсясоединением звездой (Y).

Звездой можно соединять также фазы приемника. Точки N и n называются нейтральными, а провод, соединяющий точку N генератора с точкой n приемника, — нейтральным. Провода A-A ’ , B-B ’ и C-C ’ , соединяющие начала фаз генератора и приемника, называются линейными.

Напряжение между началом и концом фазы называется фазным напряжением . Таким образом, имеется три фазных напряжения — , и . Обычно за условное положительное направление ЭДС генератора принимают направление от конца к началу фазы. Положительное направление тока в фазах совпадает с положительным направлением ЭДС, а положительное направление падения напряжения (напряжение) на фазе приемника совпадает с положительным направлением тока в фазе. Положительным направлением напряжения на фазе генератора, как и на фазе приемника, является направление от начала фазы к её концу, то есть противоположное положительному направлению ЭДС.

Напряжение между линейными проводами называется линейным напряжением . Таким образом, имеется три линейных напряжения — , и , условное положительное направление которых приняты от точек, соответствующих первому индексу, к точкам, соответствующих второму индексу. Линейные напряжения определяются через известные фазные напряжения. Это соотношение может быть получено из уравнения, написанного по второму закону Кирхгофа для контура ANBA, если принять направление обхода контура от точки А к точке N и т.д.: . Отсюда

Таким образом, действующее значение линейных напряжений равно векторной разности соответствующих фазных напряжений.

При построении векторных диаграмм напряжений удобно принимать потенциалы нейтральных точек N и n равными нулю, то есть совпадающими с началом координатных осей комплексной плоскости. Таким образом, на векторной диаграмме удобно направить векторы фазных напряжений от точки N к точкам А, В и С, то есть противоположно условному положительному направлению напряжений на схемах.

Для нахождения вектора линейного напряжения , как следует из уравнения , необходимо к вектору напряжения прибавить вектор напряжения с противоположным знаком. После переноса вектора параллельно самому себе он соединит точки А и В на векторной диаграмме фазных напряжений. Аналогично строят векторы линейных напряжений и .

На векторной диаграмме напряжений векторы фазных напряжений образуют звезду, а векторы линейных напряжений – замкнутый треугольник. Вследствие этого векторная сумма линейных напряжений всегда равна нулю, то есть

Так как при симметричной системе треугольник линейных напряжений равносторонний, то, чтобы найти соотношение между линейными и фазными напряжениями, надо опустить перпендикуляр из точки N на вектор напряжения . Тогда . Так как , а , то

Таким образом, если система напряжений симметрична, то при соединении звездой линейное напряжение в раза больше фазного напряжения. Предусмотренные ГОСТом и применяемые на практике напряжения переменного тока 127, 222, 380 и 660 В как раз и отличаются друг от друга в 1,73 раза. Если В, то В, что обозначают как 220/127 В. Кроме того, применяют системы 380/220 и 660/380 В.

Читайте также:  Формула мощности для трансформатора схема

В четырехпроводной трехфазной цепи имеется два уровня напряжения, различающихся в 1,73 раза, что позволяет использовать приемники с различным номинальным напряжением.

При подключении приемников к трехфазному генератору, обмотки которого соединены звездой, ток протекает по обмоткам генератора, линейным проводам и фазам приемника. Ток в фазах генератора или приемника называется фазным током . Ток в линейных проводах называется линейным током . Так как обмотка генератора, линейный провод и приемник, принадлежащий одной фазе, соединяются последовательно, то при соединении звездой линейный ток равен фазному:

Ток в нейтральном проводе может быть определен по первому закону Кирхгофа, на основании которого для точки n можно записать уравнение

Следовательно, ток в нейтральном проводе равен геометрической сумме фазных токов.

Ток в каждой фазе может быть определен по закону Ома для цепи синусоидального тока. Так для фазы А

Аналогично определяют фазные токи и .

Зная модули , и и сдвиги фаз φА, φВи φС между векторами соответствующих фазных напряжений и токов, можно построить векторную диаграмму. При построении принято, что система фазных напряжений симметрична (что на практике почти всегда имеет место), а сопротивление фаз приемников различны. В результате фазные токи оказываются различными по значению и сдвинуты по фазе на различные углы. Геометрическим сложением фазных токов находят вектор тока . Чем больше различие в фазных токах, тем больше ток в нейтральном проводе.

При симметричной системе напряжений и симметричной нагрузке, когда , то есть когда и , фазные токи равны по значению и углы сдвига фаз одинаковы:

Итак, фазные токи при симметричной нагрузке образуют симметричную систему, вследствие чего ток в нейтральном проводе равен нулю:

Векторная диаграмма напряжений и токов для симметричной нагрузки показана на рисунке

При симметричной нагрузке создается такой режим трехфазной цепи, при котором в нейтральном проводе тока нет. Следовательно, можно отказаться от нейтрального провода и перейти к трехпроводной трехфазной цепи.

Изменение мгновенных значений симметричной системы токов аналогично изменению мгновенного значения ЭДС.

При t=0 ток iA=0, ток iС положителен, а ток iВ отрицателен, причем iС=- iВ Это значит, что действительное направление тока в фазе С совпадает с условным положительным направлением, указанным на рисунке, а в фазе В противоположен ему. Провод В в данный момент времени является обратным проводом для фазы С. При t=T/2 токи iA и iСположительны, причем iA= iС=0,5Im, а ток iВ отрицателен, причем iВ=-Im. Провод В является обратным проводом для фаз А и С. Преимущество трехфазной трехпроводной системы в том и состоит, что не требуется специальных обратных проводов, их функции поочередно выполняют прямые провода.

Обмотки современных трехфазных генераторов, которые устанавливают на электростанциях, соединяют всегда звездой, что позволяет выполнять изоляцию обмоток на фазное напряжение, которое меньше линейного в 1,73 раза. При соединении обмоток генератора звездой фазы приемника могут быть соединены как звездой, так и треугольником.

26. Трёхпроводная и четырёхпроводная трёхфазные цепи. Достоинства и недостатки.

Четырехпроводные трехфазные цепи (рисунок 4.4) используются при напряжениях до 1000 В во внутренних и наружных проводках стационарных объектов. При соединении обмоток генератора звездой концы фаз Х, Y, Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью). Концы фаз нагрузки x, y, z так же соединяются в нейтральной точке n. Начала фаз нагрузки (а, b, c) подключаются к началам фаз генератора (А, В, С).

Провода, соединяющие начала фаз генератора с нагрузкой называются линейными, а токи протекающие в этих проводах – линейными токами ( , , ). Напряжение между двумя линейными проводами называют линейным напряжением ( , , ). Провод, соединяющий нейтраль генератора и нейтраль приемника, называют нейтральным проводом, а ток протекающий в этом проводе – током нейтрального провода ( ). Ток, протекающий от начала к концу фазы нагрузки, называется фазным током нагрузки ( , , ), при соединении нагрузки звездой фазные токи равны линейным. Напряжение между началом и концом фазы называют фазным напряжением ( , , ). Фазным током генератора является ток, протекающий через фазную обмотку статора. Расположение фаз по часовой стрелке называется прямым чередованием фаз (А, В, С), а против часовой – обратным чередованием (А, С, В).

Рисунок 4.4 — Четырехпроводная трехфазная цепь

(звезда с нейтральным проводом)

Если комплексные сопротивления фаз нагрузки равны между собой ( ), то такую нагрузку называют симметричной. Если это условие не выполняется то нагрузку называют несимметричной.

Если пренебречь сопротивлениями линейных и нейтрального проводов, то фазные напряжения на нагрузке будут равны фазным ЭДС источника (генератора):

Линейные напряжения можно определить по второму закону Кирхгофа:

Токи в каждой фазе приемника определяться по формулам:

В соответствии с приведенными уравнениями построена топографическая векторная диаграмма (рисунок 4.5) для симметричной четырехпроводной трехфазной цепи. Так как комплексные сопротивления фаз нагрузки равны, то фазные токи имеют одинаковую величину и сдвинуты относительно векторов фазных напряжений на один и тот же угол. Из рассмотрения треугольника напряжений образованного векторами , и следует, что значение линейного напряжения определяется, как: , то есть при соединении звездой линейное напряжение в раз больше фазного. Кроме того, из векторной диаграммы следует, что при симметричной нагрузке ток нейтрального провода равный сумме векторов фазных токов равен нулю: . То есть при симметричной нагрузке ток в нейтральном проводе не протекает, следовательно, необходимость в этом проводе отпадает. Поэтому при подключении к трехфазной системе симметричной нагрузки фазы которой соединены звездой (трехфазные электродвигатели, электрические печи и т. п.) применяется трехпроводная трехфазная цепь, показанная на рисунке 4.6. Векторная диаграмма этой цепи ничем не отличается от векторной диаграммы четырехпроводной трехфазной цепи.

Читайте также:  Мощность переменного тока для чайников

Рисунок 4.5 — Топографическая векторная диаграмма

для симметричной четырехпроводной трехфазной цепи

В несимметричном режиме, когда , режимы работы четырехпроводной и трехпроводной трехфазных цепей значительно отличаются. В четырехпроводной цепи (рисунок 4.4), благодаря нейтральному проводу напряжения на каждой из фаз нагрузки будут неизменными и равными соответствующим фазным напряжениям источника, как по величине, так и по фазе. Так как комплексные сопротивления фаз не равны то токи в фазах будут различными, и ток нейтрального провода будет отличаться от нуля: . Векторная диаграмма для несимметричной четырехпроводной трехфазной цепи приведена на рисунке 4.7.

Рисунок 4.6 — Трехпроводная трехфазная цепь

при соединении нагрузки звездой

В трехпроводной трехфазной цепи фазные напряжения приемника не будут равны соответствующим фазным напряжениям источника. В этом случае между нейтральными точками источника и приемника возникает напряжение — напряжение смещения нейтрали. Для определения напряжения смещения нейтрали можно воспользоваться методом двух узлов:

где , , — комплексные проводимости фаз нагрузки. Зная напряжение смещения нейтрали и фазные напряжения источника можно определить фазные напряжения на нагрузке:

Векторная диаграмма соответствующая несимметричному режиму работы трехпроводной цепи показана на рисунке 4.8. Из векторной диаграммы видно, что несимметрия нагрузки в трехпроводной цепи приводит к значительному искажению системы фазных напряжений на нагрузке, причем фазные напряжения могут значительно превышать свои номинальные значения. Поэтому в трехпроводных цепях, при соединении нагрузки звездой допустим только симметричный режим, то есть комплексные сопротивления фаз нагрузки должны быть равны.

Рисунок 4.7 — Векторная диаграмма для несимметричной

четырехпроводной трехфазной цепи

Рисунок 4.8 — Векторная диаграмма для несимметричной

трехпроводной трехфазной цепи

27. Соединение приёмников энергии треугольником. Фазные и линейные токи.

соединение звездой соединение треугольником

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Почему необходимо повышать коэффициент мощности?

Коррекция коэффициента мощности

Коэффициент мощности – это отношение полезной (активной) мощности к полной (кажущейся) мощности, потребляемой электрооборудованием объекта или электроустановкой. Он является мерой эффективности преобразования электрической энергии в полезную работу. Идеальное значение коэффициента мощности равно единице. Любая величина, меньшая, чем единица, означает, что для получения желаемого результата необходима дополнительная мощность.

Протекание токов приводит к потерям в генерирующих мощностях и распределительной системе. Нагрузка с коэффициентом мощности 1,0 наиболее эффективно загружает источник, а нагрузка с коэффициентом мощности, к примеру, 0,8 является причиной больших потерь в системе и более высоких расходов на электроэнергию. Сравнительно небольшое улучшение коэффициента мощности может привести к значительному снижению потерь, так как они пропорциональны квадрату тока.

Если коэффициент мощности меньше единицы, это указывает на присутствие так называемой реактивной мощности. Она требуется для получения магнитного поля, необходимого для работы двигателей и других индуктивных нагрузок. Реактивная мощность, которую также можно назвать бесполезной мощностью или мощностью намагничивания, создаёт дополнительную нагрузку на систему электропитания и увеличивает затраты потребителя за электроэнергию.

Низкий коэффициент мощности обычно является результатом сдвига фаз между напряжением и током на выводах нагрузки. Также его причиной может стать высокое содержание гармоник, то есть сильно искажённая форма тока. Коэффициент мощности чаще всего понижается из-за наличия индуктивных нагрузок: асинхронных двигателей, силовых трансформаторов, ПРА люминесцентных ламп, сварочных установок и дуговых печей. Искажения формы тока могут быть результатом работы выпрямителей, преобразователей, регулируемых приводов, импульсных источников питания, газоразрядных ламп или других электронных нагрузок.

Низкий коэффициент мощности из-за индуктивных нагрузок может быть улучшен с помощью оборудования коррекции коэффициента мощности, а низкий коэффициент мощности из-за искажения формы тока требует изменения конструкции оборудования или установки фильтров гармоник. Некоторые преобразователи позиционируются как имеющие коэффициент мощности выше 0,95, тогда как на самом деле их реальный коэффициент мощности находится в пределах от 0,5 до 0,75. Значение 0,95 основано на косинусе угла между напряжением и током и не учитывает провалы в форме тока, которые также приводят к увеличению потерь.

Для работы индуктивной нагрузки необходимо магнитное поле, для создания которого требуется ток, отстающий по фазе от напряжения. Коррекция коэффициента мощности (компенсация реактивной мощности) – это процесс компенсации отставания тока путём генерации опережающего тока при подключении конденсаторов к системе электроснабжения. При этом величина подключаемой ёмкости выбирается таким образом, чтобы коэффициент мощности был максимально возможно близким к единице.

Подробнее о коэффициенте мощности

Представим себе однофазный асинхронный двигатель. Если он является чисто резистивной нагрузкой для источника, ток будет в фазе с напряжением. Но так не бывает. Двигатель имеет магнитную систему, и ток намагничивания находится не в фазе с напряжением. Ток намагничивания – это ток, который определяет магнитный поток в сердечнике. Будучи не в фазе с напряжением, он заставляет поворачиваться вал двигателя. Ток намагничивания не зависит от нагрузки двигателя, его величина обычно находится в пределах от 20 до 60% от номинального тока двигателя при полной нагрузке, и он не вносит вклад в выполнение двигателем полезной работы.

Рассмотрим двигатель с током потребления 10 А и коэффициентом мощности 0,75. В этом случае полезный ток равен 7,5 А. Полезная мощность двигателя равна 230 х 7,5 = 1,725 кВт, однако общая потребляемая мощность составляет 230 х 10 = 2,3 кВт. Без коррекции коэффициента мощности для получения требуемой мощности 1,725 кВт (7,5 А) должна подаваться мощность 2,3 кВА (10 А). То есть потребляется ток 10 А, но полезную работу выполняют только 7,5 А.

Читайте также:  Формула расчета мощности солнечных панелей

Коэффициент мощности можно определить двумя способами:

  • коэффициент мощности равен частному активной мощности (кВт) и полной мощности (кВА).
  • коэффициент мощности равен косинусу угла между активной мощностью и полной мощностью (cosφ).

Коррекция коэффициента мощности

Коррекция коэффициента мощности (компенсация реактивной мощности) – это название технологии, которая используется с начала 20 века для восстановления значения коэффициента мощности до значения, как можно более близкого к единице. Это обычно достигается подключением к сети конденсаторов, которые компенсируют потребление реактивной мощности индуктивными нагрузками и таким образом снижают нагрузку на источник. При этом не должно быть никакого влияния на работу оборудования.

Обычно для уменьшения потерь в системе распределения и снижения расходов на электроэнергию производится компенсация реактивной мощности с помощью конденсаторов, которые подключаются к сети для максимально возможной компенсации тока намагничивания. Через конденсаторы, содержащиеся в большинстве устройств компенсации реактивной мощности, проходит ток, который опережает по фазе напряжение, обеспечивая таким образом опережающий коэффициент мощности. Если конденсаторы подключаются к цепи, которая работает при отстающем коэффициенте мощности, это отставание соответственно уменьшается.

Обычно значение скорректированного коэффициента мощности находится в пределах от 0,92 до 0,95. Некоторые распределительные энергокомпании поощряют работу при коэффициенте мощности, к примеру, больше 0,9, а некоторые штрафуют потребителей за низкий коэффициент мощности. Имеется много методов достижения данной цели, суть которой сводится к тому, что для снижения потерь энергии в системе распределения потребителю рекомендуется применять коррекцию коэффициента мощности. В настоящее время большинство сетевых компаний штрафуют потребителей при коэффициенте мощности ниже 0,95 или 0,9.

Необходимость повышения коэффициента мощности

При должным образом выполненной коррекции коэффициента мощности достигаются следующие преимущества:

  • экологические: снижение потребления электроэнергии за счёт повышения эффективности её использования. Снижение потребления приводит к уменьшению выбросов парниковых газов и замедлению истощения ресурсов ископаемого топлива для электростанций;
  • уменьшение расходов на электроэнергию;
  • возможность получения большей мощности от имеющегося источника;
  • снижение тепловых потерь в трансформаторах и оборудовании распределения;
  • уменьшение падения напряжения в длинных кабелях;
  • увеличение срока службы оборудования в связи со снижением электрической нагрузки на кабели и другие электрические компоненты.

Методы улучшения коэффициента мощности

Коррекция коэффициента мощности (компенсация реактивной мощности) достигается установкой конденсаторов параллельно двигателю или схеме освещения, которые могут устанавливаться на оборудовании, распределительном щите или на вводе в электроустановку.

Статическая компенсация реактивной мощности может быть достигнута для каждого отдельного двигателя при подключении компенсирующих конденсаторов к пускателю двигателя. При этом при изменении нагрузки двигателя может наблюдаться недо- или перекомпенсация. Статическая компенсация реактивной мощности не должна применяться на выходе регулируемого привода, электронного устройства плавного пуска или преобразователя, так как конденсаторы могут стать причиной выхода из строя электронных компонентов.

При правильно рассчитанной компенсации реактивной мощности не должно быть перекомпенсации. Обычно компенсация реактивной мощности отдельного двигателя рассчитывается исходя из реактивной (намагничивающей) мощности, так как она сравнительно постоянна в отличие от активной мощности, это позволит избежать перекомпенсации.

При применении управления компенсацией реактивной мощности в схеме звезда/треугольник необходимо обратить внимание на то, чтобы конденсаторы не работали в режиме частого подключения и отключения. Обычно устройство компенсации подключается к сети или цепям контактора переключения на треугольник. Устройство компенсации реактивной мощности, подключаемое на вводе электроустановки, состоит из контроллера, измеряющего реактивную мощность и коммутирующего конденсаторы для поддержания значения коэффициента мощности выше заданного значения (обычно 0,95). При применении общей компенсации реактивной мощности другие нагрузки теоретически могут устанавливаться в любом месте сети.

Источник



Способы повышения коэффициента мощности

date image2015-02-27
views image10717

facebook icon vkontakte icon twitter icon odnoklasniki icon

Большинство потребителей электрической энергии синусоидального тока представляют активно-индуктивные нагрузки, токи которых отстают по фазе от напряжения сети. Для потребителей электрической энергии при заданном напряжении питающей сети U и потребляемой активной мощности Р, ток потребителя зависит от величины cos j :

то есть с уменьшением cos j ток возрастает. Электрические генераторы, трансформаторы и электрические сети рассчитываются на определенные значения напряжения и тока . Поэтому при cos j = 0.5 и полной загрузке током генераторов, трансформаторов и сетей, потребителю может быть передана активная мощность, составляющая 50% от номинальной активной мощности трансформаторов и генераторов при cos j = 1. Таким образом, генераторы, трансформаторы и сеть будут полностью загружены по току и недогружены по активной мощности. Поэтому величину cos j, характеризующую использование номинальной мощности источника электрической энергии, называют коэффициентом мощности. Работа потребителей с малым коэффициентом мощности, кроме ухудшения условий использования источника питания, приводит к увеличению мощности потерь в линиях передач, вследствие увеличения передаваемого тока.

Существует несколько способов для увеличения коэффициента мощности, основанных на подключении к нагрузке приемника с емкостным током:

1. Применение синхронных двигателей, которые позволяют регулировать cos j при изменении тока возбуждения (синхронные компенсаторы).

2. Параллельно приемникам электрической энергии подключают конденсаторы.

Емкость конденсаторов, необходимая для уменьшения угла сдвига фаз между током и напряжением от j1 до требуемого значения j 2 определяется из выражения:

Обычно при помощи конденсаторов компенсацию угла j осуществляют, повышая cos j до 0.9 — 0.95, так как дальнейшая компенсация требует больших затрат на установку конденсаторов, которые экономически неоправданны.

Источник