Меню

Как определить среднюю полезную мощность

Как определить среднюю полезную мощность

Под мощностью подразумевают работу, выполненную за единицу времени, однако этот подход в большинстве случаев требует уточнений, поскольку интенсивность выполнения работы может многократно измениться за рассматриваемое время. Например, при движении автомобиля водитель увеличивает и уменьшает поступление топливно-воздушной смеси в зону сгорания, переключает передачи трансмиссии, притормаживает. Всё это влияет на текущую мощность двигателя. Поэтому в физике различают мгновенную мощность — мощность, измеренную за промежуток времени достаточно малый, чтобы считать ее величину постоянной:

где $\Delta t$ — промежуток времени, $\Delta A$ — проделанная за это время работа.

Поскольку мгновенные величины мощности могут меняться без какой-либо четко выраженной закономерности, подсчитать их среднее значение бывает затруднительно. Поэтому среднюю мощность находят просто как

Готовые работы на аналогичную тему

Следует различать мощность, связанную с общими затратами на движение и ту, что развивается для выполнения полезной работы. Так, один и тот же груз с одной и той же скоростью на одно и то же расстояние можно перевезти разными способами, например, на старинном паровозе и современном электровозе. Полезная работа будет выполнена одинаковая, но интенсивность затрат энергии — различная. Поэтому существует понятие средней полезной мощности, расчет которой зависит от многих факторов, связанных с особенностями движителей и сред, в которых выполняется работа.

Автомобиль массой 2 т поднимается в гору с постоянным ускорением по участку дороги с уклоном 30°. Движение длится 10 с. Скорость транспортного средства в начале подъема 20 км/ч, в конце 40 км/ч. Общая сила сопротивления (трение, вязкость воздуха и т.д.), постоянна и равна 600 Н. Определить среднюю полезную мощность двигателя.

Двигатель должен развить следующие силы:

  1. преодолевающую силу сопротивления;
  2. преодолевающую гравитацию, поскольку транспорт движется в гору;
  3. обеспечивающую ускорение.

Найдем их последовательно.

На преодоление силы сопротивления необходимо развить те же 600 ньютонов, но в направлении, совпадающем с вектором скорости.

Сила, преодолевающая силу тяжести, поскольку ее вектор находится под углом к вектору скорости, будет исчисляться по формуле:

$F_g = m \cdot g \cdot \sin(\alpha)$,

где $g$ — ускорение свободного падения, $m$ — масса. $\alpha$ — угол наклона.

$\Delta v = v_1 — v_0 = \frac<40000 - 20000> <3600>\approx 5,56 \frac<м><с>$

$F = 600 + 2000 \cdot 9,8 \cdot 0,5 + 2000 \cdot 0.556 \approx 600 + 9800 + 1112 = 11512 Н$

Работа равна произведению силы и пути, который можно выразить через время, начальную скорость и ускорение:

$A = F \cdot (v_0 \cdot t + \frac<2>) \approx 11512 \cdot (55,6 + 0,556 \cdot 100) \approx 11512 \cdot 111,11 \approx 1279111 Дж$

Разделив работу на время, получим среднюю полезную мощность:

$P = \frac<1279111> <10>\approx 127911 Вт$

Ответ: $\approx 127911$ Вт. Примечание: полную мощность двигателя можно найти разделив это значение на КПД.

Источник

Полезная мощность

Мощность технического оборудования или энергетических установок (аппаратов, агрегатов), отдаваемая ими для совершения работы, указана в их технических характеристиках. Но это не значит, что вся она используется по прямому назначению для достижения результата. Только полезная мощность расходуется на выполнение работы.

Общее определение мощности

Определение и формула полезной мощности

Стоит рассмотреть понятие полезной мощности и формулу на примере электрической цепи. Та мощность, которую источник питания (ИП), в частности, тока, развивает в замкнутой цепи, будет полной мощностью.

Схема цепи

Цепь включает в себя: источник тока, имеющий ЭДС (E), внешнюю цепь с нагрузкой R и внутреннюю цепь ИП, сопротивление которого R0. Формула полной (общей) мощности равна:

Здесь I – это значение тока, проходящего по цепи (А), а E – величина ЭДС (В).

Внимание! Падение напряжения на каждом из участков будет равно U и U0, соответственно.

Значит, формула примет вид:

Pобщ = E*I = (U + U0) *I = U*I + U0*I.

Видно, что значение произведения U*I равняется мощности, отдаваемой источником на нагрузке, и соответствует полезной мощности Pпол.

Читайте также:  Инверторный генератор мощностью 2 квт

Величина, равная произведению U0*I, соответствует мощности, которая теряется внутри ИП на нагрев и преодоление внутреннего сопротивления R0. Это мощность потерь P0.

Подставляемые в формулу значения показывают, что сумма полезной и потерянной мощностей составляют общую мощность ИП:

Важно! При работе любого аппарата (механического или электрического) полезной мощностью будет та, которая останется для совершения нужной работы после преодоления факторов, вызывающих потери (нагрев, трение, противодействующие силы).

Параметры источника питания

На практике часто приходится думать, какой должна быть мощность источника тока, сколько нужно ватт (вт) или киловатт (квт) для обеспечения бесперебойной работы устройства. Для понимания сути нужно иметь представления о таких понятиях, применяемых в физике, как:

  • полная энергия цепи;
  • ЭДС и напряжение;
  • внутреннее сопротивление источника питания;
  • потери внутри ИП;
  • полезная мощность.

Независимо от того, какую энергию выдаёт источник (механическую, электрическую, тепловую), мощность его должна подбираться с небольшим запасом (5-10%).

Полная энергия цепи

При включении в цепь нагрузки, которая будет потреблять энергию от источника тока (ИТ), ток будет совершать работу. Энергия, выделяемая на всех включенных в цепь потребителях и элементах цепи (провода, электронные компоненты т.д.), носит название полной. Источник энергии может быть любой: генератор, аккумулятор, тепловой котёл. Цифра значения полной энергии будет складываться из энергии, затрачиваемой источником на потери, и количества, затрачиваемого на выполнение конкретной работы.

ЭДС и напряжение

В чём разница между этими двумя понятиями?

ЭДС – электродвижущая сила, это напряжение, которое сторонние силы (химическая реакция, электромагнитная индукция) создают внутри источника тока (ИТ). ЭДС – это сила перемещения электрических зарядов в ИТ.

ЭДС определение

К сведению. Измерить значение E (ЭДС) представляется возможным только в режиме холостого хода (х.х.). Подключение любой нагрузки вызывает потерю напряжения внутри ИП.

Напряжение (U) – физическая величина, представляющая собой разность потенциалов ϕ1 и ϕ2 на выходе источника напряжения (ИН).

Разность потенциалов

Полезная мощность

Определение понятия полной мощности применяют не только в отношении электрических цепей. Оно применимо и по отношению к электродвигателям, трансформаторам и прочим устройствам, способным потреблять, как активную, так и реактивную составляющую энергии.

Потери внутри источника питания

Подобные потери происходят на внутреннем сопротивлении двухполюсника. У аккумулятора это сопротивление электролита, у генератора – обмоточное сопротивление, провода выводов которого выходят из корпуса.

Внутреннее сопротивление источника питания

Взять и просто измерить R0 тестером не получится, узнать его обязательно нужно для вычисления потерь Р0. Поэтому применяют косвенные методы.

Косвенный метод определения R0 заключается в следующем:

  • в режиме х.х. замеряют E (В);
  • при включенной нагрузке Rн (Ом) измеряют Uвых (В) и ток I (А);
  • падение напряжения внутри источника считают по формуле:

На последнем этапе находят R0=U0/I.

Схема для измерения R0

Взаимосвязь полезной мощности и КПД

Коэффициент полезного действия (КПД) – величина безразмерная, численно выражается в процентах. КПД обозначают буквой η.

Формула имеет вид:

где:

  • А – полезная работа (энергия);
  • Q – затраченная энергия.

По мере увеличения КПД в различных двигателях допустимо выстроить следующую линейку:

  • электродвигатель – до 98%;
  • ДВС – до 40%;
  • паровая турбина – до 30%.

Что касается мощности, КПД равен отношению полезной мощности к полной мощности, которую выдает источник. В любом случае η ≤ 1.

Важно! КПД и Pпол не одно и то же. В разных рабочих процессах добиваются максимума или одного, или другого.

Получение максимальной энергии на выходе ИП

К сведению. Чтобы увеличить КПД подъёмных кранов, нагнетательных насосов или двигателей самолётов, нужно уменьшить силы трения механизмов или сопротивления воздуха. Этого достигают применением разнообразных смазок, установкой подшипников повышенного класса (заменив скольжение качением), изменением геометрии крыла и т.д.

Максимальная энергия или мощность на выходе ИП может быть достигнута при согласовании сопротивления нагрузки Rн и внутреннего сопротивления R0 ИП. Это значит, что Rн = R0. В этом случае КПД равен 50%. Это вполне приемлемо для малоточных цепей и радиотехнических устройств.

Читайте также:  Увеличение мощности двигателя субару форестер

Однако этот вариант не подходит для электрических установок. Чтобы впустую не тратились большие мощности, режим эксплуатации генераторов, выпрямителей, трансформировав и электродвигателей таков, что к.п.д. приближается к 95% и выше.

График зависимости Рпол и η от тока в цепи

Достижение максимального КПД

Формула КПД источника тока имеет вид:

η = Pн/Pобщ = R/Rн+r,

где:

  • Pн – мощность нагрузки;
  • Pобщ – общая мощность;
  • R – полное сопротивление цепи;
  • Rн – сопротивление нагрузки;
  • r – внутреннее сопротивление ИТ.

Как видно из графика, изображённого на рис. выше, мощность Pн с уменьшением тока в цепи стремится к нулю. КПД, в свою очередь, достигнет максимального значения, когда цепь будет разомкнута, и ток равен нулю, при коротком замыкании в цепи станет равным нулю.

Если обратиться к элементарному тепловому двигателю, состоящему из поршня и цилиндра, то у него степень сжатия равна степени расширения. Повышение КПД такого мотора возможно в случае:

  • изначально высоких параметров: давления и температуры рабочего тела перед началом расширения;
  • приближения их значений к параметрам окружающей среды по окончании расширения.

Достижение ηmax доступно лишь при наиболее эффективном изменении давления рабочего компонента во вращательное движение вала.

К сведению. Термический коэффициент полезного действия повышается с повышением доли теплоты, подаваемой к рабочему телу, которая преобразуется в работу. Подаваемая теплота делится на два вида энергии: внутренняя в виде температуры и энергия давления.

Механическую работу, по сути, совершает только второй вид энергии. Это порождает целый ряд минусов тормозящих процесс повышения КПД:

  • некоторая часть давления уходит на внешнюю среду;
  • достижение максимального коэффициента полезного действия невозможно без увеличения процента использования энергии давления для преобразования в работу;
  • нельзя поднять КПД тепловых двигателей, не изменяя S поверхности приложения давления, и без удаления этой поверхности от точки вращения;
  • использование только газообразного рабочего тела не способствует повышению η тепловых двигателей.

Для достижения высокого коэффициента полезного действия теплового двигателя нужно определяться с рядом решений. Этому способствуют следующие модели устройства:

  • ввести в цикл расширения ещё одно рабочее тело с другими физическими свойствами;
  • наиболее полно перед расширением использовать оба вида энергии рабочего тела;
  • осуществлять генерацию добавочного рабочего тела прямо при расширении газообразного.

Информация. Все доработки двигателей внутреннего сгорания в виде: нагнетателя турбонадува, организации многократного или распределённого впрыска, а также повышения влажности воздуха, доведения топлива при впрыске до состояния пара, не дали ощутимых результатов резкого повышения КПД.

КПД двигателя внутреннего сгорания

Коэффициент полезного действия нагрузки

Какой бы ни была мощность источника, кпд электроприборов никогда не будет равна 100%.

Исключение. Принцип теплового насоса, применяемый в работе холодильников и кондиционеров, приближает их КПД к 100%. Там нагрев одного радиатора приводит к охлаждению другого.

В остальном случае энергия уходит на посторонние эффекты. Чтобы уменьшить этот расход, нужно обращать внимание на сопутствующие факторы:

  • при обустройстве освещения – на конструкцию светильников, устройство отражателей и цвет окраски помещений (отражающий или светопоглощающий);
  • при организации отопления – на теплоизоляцию тепловодов, установку рекуперационных вытяжных устройств, утепление стен, потолка и пола, монтаж качественных оконных стеклопакетов;
  • при организации электропроводки – правильно подбирать марку и сечение проводников соответственно будущей подключаемой нагрузке;
  • при монтаже электродвигателей, трансформаторов и других потребителей переменного тока – на значение cosϕ.

Снижение затрат на потери однозначно приводит к увеличению коэффициента полезного действия при совершении источником энергии работы на нагрузку.

Снижение влияния факторов, вызывающих потери мощности, увеличивает процент полезной мощности, необходимой для совершения работы. Это возможно при выявлении причин потерь и их устранении.

Видео

Источник



Определение полезной мощности насоса

Устройство и работа гидравлических машин основана на использовании принципов гидравлики. В гидравлических машинах рабочим телом является жидкость.

Читайте также:  Как узнать мощность прибора по сопротивлению

По своему назначению в зависимости от характера происходящих в них энергетических процессов гидравлические машины можно разделить на две большие группы: гидравлические двигатели и насосы.

Гидравлические двигатели служат для преобразования гидравлической энергии потока жидкости в механическую энергию, получаемую на валу двигателя и используемую в дальнейшем для различных целей, в основном для привода различных машин.

Насосами называются гидравлические машины для перемещения жидкостей путем повышения энергии рабочей среды. Механическая энергия, подводимая к насосам от двигателей, приводящих эти машины в действие, преобразуется в них в гидравлическую энергию жидкости.

По принципу действия различают гидравлические машинылопастного типа (центробежные насосы, турбины) и машины, действующие по принципу вытеснения жидкости твердым телом (поршневые насосы).

Полезная мощность-работа, потребляемая насосом в единицу времени.

Полезная работа, потребляемая насосом в единицу времени (мощность) будет равна:

N= γ·Q·H, (кВт); (1 кВт=1, 36 л. с)

где γ – удельный вес жидкости, γ = ρ·g;

Q – производительность насоса, т.е. расход жидкости, подаваемой насосом в трубопровод ,м 3 /с;

Н – полный (манометрический) напор,м.

Действительная мощность, потребляемая насосом и подводимая к нему от двигателя, будет больше полезной мощности ввиду неизбежных потерь энергии в насосе. В формуле для определения полезной мощности насоса Н=Ннас, тогда Nнас= ,где определяется по формуле:

Nнас= = 760 9,81 0,005 12,77=476 Вт(0,476 кВт)

где Н – высота подъема, т.е. Н=Н2·αi. Для практических расчетов принимаем

αi=1. Индекс «в» на всасывающей линии, «н» – на нагнетательной линии.

Заключение

В ряде участков гидравлической установки режим течения жидкости — турбулентный, в результате мы имеем большие потери напора. Как следствие это влечет за собой экономические затраты. Рекомендую добавить в циркуляционную жидкость небольшие количества таких веществ, как, например, высокомолекулярные полимеры (полиокс, полиакриламид — ПАА), гуаровая смола, поливиниловый спирт — ПВС. Будучи растворенными в жидкости, они обладают способностью значительно снижать гидравлические сопротивления при турбулентном режиме.

Механизм происходящих при этом явлений полностью пока не выяснен, но есть основания полагать, что частицы этих веществ (их длинные и гибкие молекулы), внесенные в поток жидкости, тесно взаимодействуя с ее пульсирующими частицами, существенно изменят характер турбулентного течения.

Указанные изменения проявляются, прежде всего, в близкой к стенкам, ограничивающим поток, весьма малой по толщине области пограничного слоя. Здесь снижаются пристеночные поперечные пульсации скоростей и давлений, и это оказывает решающее влияние на общий уровень турбулентности и поведения потока в целом. Причем достаточно нескольких миллионных долей полимера по отношению к растворителю, чтобы достигалось значительное уменьшение гидравлического сопротивления.

Список литературы

1. Нефтегазовая гидромеханика / Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. – Москва – Ижевск: Институт компьютерных исследований, 2003. – 480 с.

2. Техническая гидромеханика/ Емцев Б.Т. – 2 – е изд., перераб. И доп. – М.: Машиностроение, 1987. – 440 с.: ил.

3. Основы теоретической механики: Учебник.2 – е изд., перераб. и дополн. – М.: Изд–во МГУ, 2000. – 719 с.

4. Сопротивление материалов: Учебник для вузов/ Под общ. Ред. Акад. АН УССР Г.С. Писаренко. – 4 – е изд. перераб. и доп. – Киев: Высшая школа, 1979. – 696 с.30106.2105000000.

5. Бурдин Г.Д., Базакуза В.А., Единицы физических величин: Справочник – Харьков: Высшая школа, 1984.

6. Стоцкий Л.Р. Физические величины и их единицы. – М.: Просвещение, 1984.

7. Теория механизмов и машин: Терминология. Буквенное обозначение величин. – М.: Наука, 1984.

8. Курсовое проектирование и его унификация в Московском институте нефти и газа имени И.М. Губкина.4.1 и 4.2 – М. – : МИНГ, 1987.

9. Методическое пособие для выполнения курсовой работы по гидравлике / Зозуля Н.Е., Альметьевск, 2001.

Источник