Меню

Как можно изменить реактивную мощность 1

Практическое использование реактивной энергии

Вот цитата из учебника «Электротехника с основами электроники» авторов Зороховича и Калинина для техникумов. В параграфе «Активная и реактивная мощности» читаем на стр. 121:
«…только активная мощность может обеспечить в приёмнике преобразование электрической энергии в другие виды энергии».

«…Реактивная мощность никакой полезной работы не создаёт, так как её среднее значение в течение одного периода равно нулю…».

Цель опыта – это практическая проверка данной цитаты из учебника.

Вступление

В электрической сети совершаются гармонические и синфазные (!) колебания тока и напряжения с частотой 50 Гц. При этом ток и напряжение совпадают по фазе. В этом может убедиться каждый желающий, подключив через шунт 0,5 Ом к сети активную нагрузку (например, лампу накаливания) и подключив к ним осциллограф (соблюдая технику безопасности). Для этой цели лучше использовать сетевой разделительный трансформатор 220 на 220 В. Вначале нужно найти и пометить в розетке фазный и нулевой провод. Как на активной нагрузке будут выглядеть вместе колебания тока и напряжения, показано на Рис.1

Но если ко вторичной обмотке трансформатора подключить реактивную нагрузку в виде конденсатора, то колебания тока и напряжения будут сдвинуты относительно друг друга по фазе на 90º. Всё это можно проверить тем же способом, что и с активной нагрузкой, подключив осциллограф к шунту и к конденсатору. Осциллограммы тока и напряжения для этого случая приведены ниже на Рис.2

Подключение в качестве реактивной нагрузки катушки индуктивности приведёт к обратному явлению. В качестве индуктивности можно использовать первичную обмотку любого силового трансформатора. В цепи такой обмотки колебания тока по фазе будут отставать от колебаний напряжения на 90º.

Если у этого сетевого трансформатора есть вторичная обмотка (хорошо, если она будет на 12÷20 Вольт), то мы всегда можем собрать колебательный контур, состоящий из вторичной обмотки данного сетевого трансформатора и конденсатора, чтобы резонансная частота полученного колебательного контура совпала с частотой колебаний в сети (50 Гц).

Настройку колебательного контура лучше выполнить практически, а не по расчётам, чтобы убедиться в том, что данный колебательный контур действительно находится в резонансе с колебаниями сети. Для этого понадобится низкоомный амперметр. Если в хозяйстве нет амперметра на 20÷100 ампер, то можно в разрыв колебательного контура включить шунт сопротивлением приблизительно 0,05 Ом, подключить к нему осциллограф и установить величину реактивного тока в этом колебательном контуре. Значение реактивного тока в колебательном контуре может достигать десятков ампер. Затем, подключая параллельно к основному конденсатору любой конденсатор небольшой емкости, надо наблюдать, что происходит с амплитудой колебания тока в контуре. Если ток продолжает возрастать, то добавляем следующий конденсатор, пока ток в контуре не начнёт убывать. После чего удаляем этот последний конденсатор, измеряем общую ёмкость всех конденсаторов и заменяем их одним или двумя конденсаторами с мощными выводами, рассчитанными на большой реактивный ток.

Напомню о технике безопасности при работе с конденсаторами. Имея дело с полярными конденсаторами, помните, что их нельзя поодиночке включать в цепь переменного тока, а только парами, при условии, что они соединены последовательно и встречно. Это означает, что плюсовой вывод одного конденсатора нужно подключать к плюсовому выводу другого конденсатора или наоборот – соединять их вместе минусовыми выводами. Такие пары конденсаторов уже можно включать в цепь переменного тока, важно лишь, чтобы рабочее напряжение не превышало их паспортное значение.

Читайте также:  Закон ома мощность через сопротивление

Второй важный момент заключается в том, что надо следить за нагревом конденсаторов. Если нет возможности приобрести конденсаторы, рассчитанные на большую реактивную мощность (измеряемую в кВАр-ах), то допускается подключение конденсаторов, не рассчитанных на большой реактивный ток, но только на короткое время, при условии, что мы будем следить за их тепловым режимом и не допускать перегрева конденсаторов, что чревато их взрывом. Допускается нагрев до 60÷85º и более, в зависимости от типа конкретного конденсатора.

Итак, при подключенном к вторичной обмотке нашего сетевого трансформатора реактивном элементе — конденсаторе, ток и напряжение в колебательном контуре окажутся сдвинутыми по фазе почти на 900, при условии, конечно, что сечение провода вторичной обмотки и реактивная мощность конденсатора окажутся приличными. Интересно отметить одну важную деталь. Наш трансформатор не только не заметит подключение такого настроенного конденсатора, но и ток его потребления от сети значительно снизится. Об этом я скажу в конце этой работы.

Но, если вместо конденсатора к вторичной обмотке этого же трансформатора подключить активную нагрузку (например, лампочку накаливания), то напряжение и ток снова будут стремиться стать синфазными (сдвиг фаз между их колебаниями будет стремиться к нулю). При этом ток потребления трансформатора немедленно повысится, в соответствии с величиной мощности подключенной активной нагрузки.

При подключении активной нагрузки к вторичной обмотке, сердечник трансформатора намагничивается пропорционально величине тока в нагрузке, а при коротком замыкании вторичной обмотки он может войти в насыщение. При насыщении сердечника трансформатора его магнитные свойства резко снижаются, в результате индуктивность первичной обмотки резко снижается, что сопровождается резким возрастанием тока в первичной обмотке трансформатора и, соответственно, возрастает потребляемая трансформатором от сети мощность. Но реактивные элементы (катушки и конденсаторы), подключаемые параллельно вторичной обмотке трансформатора и настроенные в резонанс с колебаниями в сети, такого эффекта не вызывают (!), несмотря на то, что в цепи колебательного контура вторичной обмотки реактивные токи будут достигать десятков ампер! Возникает интересный вопрос: а можно ли как-то использовать свободные реактивные мощности, достигающие в колебательных контурах огромных значений?

Я не стану рассматривать здесь все виды нагрузок. Кому надо, сами найдёте нужную вам информацию в книгах или в Интернете. А здесь пойдёт речь о возможности аккумулирования и использовании реактивной энергии, свободно гуляющей по колебательному контуру.

А что если в момент, когда напряжение во вторичной обмотке равно нулю, подключить к ней через диод конденсатор и в течение первой четверти периода его заряжать, при условии, что данный конденсатор и вторичная обмотка трансформатора составляют колебательный контур с резонансной частотой 50 Гц? Следовательно, зарядить конденсатор нужно успеть за 20/4=5ms, то есть за первую четверть одного периода колебания (50 Гц).

Если конденсатор зарядится, то, когда напряжение в контуре достигнет максимального значения, нужно отключить конденсатор от вторичной обмотки, так как он больше не сможет зарядиться, а затем разрядить его на активную нагрузку в течение второй четверти периода длительностью 5 ms.

Если этот опыт удастся, то мы можем надеяться, что когда-нибудь сможем научиться использовать свободно гуляющую реактивную мощность в практических целях.

Источник

Регулирование активной и реактивной мощности синхронных генераторов при параллельной работе

Рассмотрим способы регулирования мощности на примере неявнополюсного генератора.

Читайте также:  Как увеличить мощность двигателя мотоцикла урал

Если пренебречь активным сопротивлением R1, ток якоря можно определить из уравнения напряжения:

Т.к U1=Uс=const, то силу тока I1 можно изменить только изменяя ЭДС Еf по фазе или по вел-не.

Регулирования активной мощности. Если к валу генератора приложить внешний момент, больший необходимого для компенсации магнитных и механических потерь, то ротор приобретает ускорение. Вектор Еf. смещается относительно вектора U1 на угол Θ в направлении вращения векторов (рис.1, б), т. е. меняет фазу. Возникает небалансная ЭДС Е=ЕfU1=jI1х1, приводящая к появлению тока I1. Вектор I1 отстает от вектора Еf на 90°, так как его величина и направление определяются индуктивным сопротивлением х1.

При этом генератор отдает в сеть активную мощность
Р=m1U1I1cosφ1. На его вал действует электромагнитный тормозной момент, который уравновешивает вращающий момент первичного двигателя, и частота вращения ротора остается неизменной. Чем больше внешний момент, приложенный к валу генератора, тем больше угол Θ, а следовательно, ток и мощность, отдаваемые генератором в сеть. Для увеличения активной мощности генератора необходимо увеличивать приложенный к его валу внешний вращающий момент, а для уменьшения нагрузки — уменьшать этот момент.

Рисунок 1 – Упрощенные вект. диагр. неявнополюсного генераторапри парал работе с сетью.

Если к валу ротора приложить внешний тормозной момент, то вектор Еf будет отставать от вектора напряжения U1 на угол Θ (рис.1, в). При этом возникают небалансная ЭДС Е и ток I1, вектор которого отстает от вектора Еf на 90°. Так как угол φ1>90°, активная составляющая тока находится в про-тивофазе с напряжением генератора. Следовательно активная мощность Р=m1U1I1cosφ1 забирается из сети. Машина переходит из генераторного в двигательный режим, создавая электромагнитный вращающий момент, который уравновешивает внешний тормозной момент. Частота вращения ротора при этом остается неизменной.

Регулирование реактивной мощности. Если в машине, подключенной к сети и работающей в режиме холостого хода (рис. 2, а), увеличить ток возбуждения If, то возрастет ЭДС Еf (рис. 2, б). Возникнет небалансная ЭДС Е=-jI1х1. По обмотке якоря будет проходить реактивный ток I1, который определяется только индуктивным сопротивлением х1 машины. Ток I1 отстает по фазе от напряжения генератора U1 на угол 90° и опережает на угол 90°напряжение сети Uс. При уменьшении тока возбуждения ток I1 изменяет свое направление: он опережает на 90° генератора U1 (рис. 2, в) и отстает на 90° от напряжения Uс.

При изменении тока возбуждения изменяется лишь реактивная составляющая тока I1 и реактивная мощность машины Q. Активная составляющая тока I1 и активная мощность в режиме холостого хода равны нулю.

Рисунок 2 – Упрощ. вект. диагр. неявнополюсного ген-ра при парал-ной работе с сетью при отсутствии активной нагрузки

При работе машины под нагрузкой при изменении тока возбуждения также изменяется только реактивная составляющая тока I1 и реактивная мощность машины Q.

При работе машины на сеть бесконечно большой мощности:U1 = Еf + Еа + Е = — Uс = const.

Суммарный магнитный поток, сцепленный с каждой из фаз, ΣФ = Фf + Фа + Ф

не зависит от тока возбуждения и при всех условиях остается неизменным.

Режим возбуждения синхронной машины с током Ifн, при котором реактивная составляющая тока I1 равна нулю, а cosφ1=1,0, называют режимом полного нормального возбуждения.

Читайте также:  Как усилить мощность воздушки

Если ток возбуждения If >Ifн , такой режим называют режимом перевозбуждения. Ток якоря I1 содержит отстающую от U1 реактивную составляющую, что соответствует активно-индуктивной нагрузке генератора. Реактивная составляющая тока I1 создает размагничивающий поток реакции якоря. Реактивная составляющая тока направлена от генератора в сеть, так как . Генератор отдает реактивную мощность в сеть.

Если ток возбуждения If

С уменьшением тока возбуждения наступает такой момент, при котором магнитный поток оказывается настолько ослабленным, что нагрузочный угол Θ превышает критическое значение, и генератор выпадает из синхронизма. Пунктирной линией отмечен предел статической устойчивости генератора при недовозбуждении.

Минимумы токов всего семейства U-образных характеристик лежат на линии, которая представляет собой регулировочную If=f(I1) при cosφ1=1.

Форма U-образных кривых зависит от величины x1(xd): при большем значении x1 получаются пологие (тупые) кривые, при малом значении x1 — острые.

Наиболее выгодным для генератора является его работа с нормальным током возбуждения, когда cosφ1=1. Но так как нагрузка энергосистемы имеет индуктивный характер (асинхронные двигатели, люминесцентные лампы и др.) для уменьшения потерь энергии в линиях электропередачи генераторы работают в режиме перевозбуждения.

Источник



Изменение реактивной и активной мощностей

date image2014-02-09
views image1732

facebook icon vkontakte icon twitter icon odnoklasniki icon

Предположим, что при включении на параллельную работу условия синхронизации возбужденного генератора были соблюдены в точности, т.е. UГ=UC или.E=UC. Тогда, согласно равенству (1), I=0, т. е. машина не примет на себя никакой нагрузки (рис. 7,а).

Рис. 7. Упрощенные векторные диаграммы неявнополюсного генератора, работающего параллельно с сетью при холостом ходе

Предположим теперь, что ток возбуждения после синхронизации был увеличен и поэтому E>UC. Тогда возникает ток I [см. равенство (1)], отстающий от DU, а также от E и U на 90 0 (рис 7,б). Машина, таким образом, будет отдавать в сеть чисто индуктивный, ток и реактивную мощность. Если ток возбуждения уменьшить, так что E 0 , но будет опережать E и U на 90 0 , т. е. машина будет отдавать в сеть емкостный ток и потреблять из сети реактивную мощность (рис 7,в).

Таким образом, изменение тока возбуждения синхронной машины вызовет в ней только реактивные токи или изменение реактивного тока и реактивной мощности. При E>UC синхронная машина называется перевозбужденной, а при E

Рис. 8. Векторные диаграммы синхронного генератора при параллельной работе его с сетью

Изменение тока возбуждения не вызывает появления активной нагрузки или ее изменения.

Чтобы включенная на параллельную работу машина приняла на себя активную нагрузку и работала в режиме генератора, необходимо увеличить движущий механический вращающий момент на валу, увеличив, например, поступление воды или пара в турбину.

Тогда ротор машины начнет вращаться быстрее, и вектор E несколько сдвинется в сторону вращения векторов UC (рис. 8,а). За счет такого сдвига в цепи появится напряжение DU=EUC , которое создаст ток I , отстающий, как и ранее от DU на 90 0 .

А от Е на угол ψ 90° и электромагнитная мощность

В этом случае машина будет работать двигателем, ускоряя ротор до синхронной скорости.

Весьма важно отметить, что при изменении движущего или тор­мозного механического момента на валу синхронная машина обладает свойствами саморегулирования и способностью до известных пределов сохранять синхронизм с сетью, т.е. синхронное вращение с другими синхронными машинами, приключенными к этой сети.

Источник