Меню

Как мощность добавить привода 1

Способы увеличения мощности электродвигателя

Бывает, что мощности электродвигателя недостаточно для обеспечения запуска и работы какого-либо устройства. Как увеличить мощность электродвигателя? Прежде всего, следует знать причину: почему не хватает мощности — а она кроется в параметрах тока, протекающего по обмоткам агрегата. Следовательно, нужно увеличить его значение, либо включив двигатель в сеть большей частоты (если это устройство переменного тока), либо внеся некоторые конструктивные изменения (при включении в бытовую сеть). Ниже мы рассмотрим последний случай.

Как повысить мощность электродвигателя в домашних условиях

Итак, для проведения работ вам следует «вооружиться»:

  • набором проводов разного сечения;
  • тестером;
  • частотным преобразователем;
  • источником тока с изменяемой ЭДС.

Сначала необходимо подключить электродвигатель к имеющемуся у вас источнику тока и изменяемой ЭДС и увеличить ее значение. Напряжение в обмотках должно увеличиваться соответственно и поравняться со значением ЭДС (если не принимать во внимание потери в подводящих проводниках, но они незначительны).

Для расчета увеличения мощности двигателя определите значение увеличения напряжения и возведите эту цифру в квадрат. Например, если напряжение на обмотках выросло в два раза (со 110В до 220В), мощность двигателя увеличилась в четыре раза.

Иногда самый рациональный способ повысить мощность электродвигателя – перемотать обмотку. Во многих моделях это медный проводник. Вам следует взять провод из того же материала и той же длины, но большего сечения. Мощность двигателя (и ток в проводе) увеличатся во столько же раз, во сколько снизится сопротивление обмотки. Следите за тем, чтобы напряжение на обмотках оставалось неизменным.

Расчет в этом случае тоже достаточно прост. Разделите большую цифру сечения провода на меньшую. Если провод сечением 0.5 мм заменен проводом сечением 0.75 мм, показатель мощности вырастает в 1.5 раза.

Если вы включаете асинхронный трехфазный двигатель в однофазную бытовую сеть, на первую обмотку подается фаза, на второй фаза сдвигается конденсатором, на третьей сдвиг фаз отсутствует. Именно последняя обмотка создает момент вращения в противоположном направлении (тормозящий момент). Увеличить полезную мощность двигателя в этом случае можно путем отключения третьей обмотки. Это приведет к исчезновению тормозящего момента, генерируемого при работе всех обмоток, и, соответственно, повышению мощности. Данный метод удобен в том случае, когда одна обмотка у двигателя уже сгорела – двух оставшихся вам вполне хватит для подключения и обеспечения работы агрегата.

Еще лучшего результата вы достигнете, поменяв местами выводы третьей обмотки и создав таким образом момент вращения в правильном направлении. В этом случае двигатель «выдаст» более 50% мощности от номинала. Эту обмотку рекомендуется подключать через конденсатор с правильно подобранной емкостью.

У асинхронного двигателя переменного тока мощность можно увеличить, присоединив к нему частотный преобразователь, который повысит частоту переменного тока в обмотках. Значение мощности в этом случае фиксируется с помощью тестера, поставленного на режим ваттметра. Существует два вида преобразователей частоты, отличающиеся принципом работы и устройством:

  • Приборы с непосредственной связью (выпрямители). Они не подходят для мощного оборудования, но с небольшим двигателем, использующимся в быту, способны «справиться». С помощью такого устройства осуществляется подключение обмотки к сети. Выходное напряжение, образованное им, имеет частоту от 0 до 30 Гц. При этом управлять скоростью вращения привода можно только в ограниченном диапазоне.
  • Приборы с промежуточным звеном постоянного тока. Они производят двухступенчатое преобразование энергии – выпрямление входного напряжения, его фильтрацию и сглаживание и последующую трансформацию в напряжение с требуемой частотой и амплитудой при помощи инвертора. В процессе преобразования КПД оборудования может быть несколько снижен. Благодаря возможности обеспечивать плавную регулировку оборотов и выдавать на выходе напряжение с достаточно высокой частотой, преобразователи данного типа более востребованы и широко применяются в быту и на производстве.

Произведя необходимые расчеты и выбрав наиболее эффективный в вашем случае способ, вы сможете заставить двигатель работать с нужной вам мощностью. Не забывайте о мерах предосторожности.

Увеличение оборотов электродвигателя

Увеличение оборотов электродвигателя также ведет к повышению его мощности. При выборе способа увеличения оборотов учитывайте тип агрегата, особенности модели и область ее применения.

Для повышения частоты вращения коллекторного двигателя следует или уменьшить нагрузку на вал, или увеличить напряжение питания. Обратите внимание на следующие нюансы:

  • Мощность двигателя должна держаться в рамках номинала.
  • Работа коллекторного двигателя с последовательным возбуждением без нагрузки, если не снижено питание, чревата его выходом из строя, так как он может разогнаться до слишком большой скорости.
  • Увеличение оборотов с помощью шунтирования обмотки возбуждения часто приводит к сильному перегреву мотора.

Вышеуказанный способ подходит и для электродвигателей с электронным управлением обмотками (в них используется обратная связь), поскольку их свойства очень схожи с коллекторными моделями (главное различие – невозможность осуществления реверса путем переполюсовки). Все перечисленные ограничения должны соблюдаться при работе с двигателями данного типа.

В асинхронном двигателе, подключаемом непосредственно к сети, частоту вращения регулируют, изменяя напряжение питания. Этот способ не слишком эффективен, поскольку коэффициент полезного действия сильно меняется из-за нелинейного характера зависимости скорости от напряжения. К синхронному двигателю данный метод применять нельзя.

Трехфазный инвертор позволяет регулировать обороты электродвигателей обоих типов (синхронного и асинхронного). Прибор должен обеспечивать уменьшение напряжения при снижении частоты.

Зная, как сделать мощнее электродвигатель, вы сможете заставить оборудование, к которому он подключен, работать с гораздо большей эффективностью и КПД. Естественно, перед началом работ следует четко представлять себе номинальную мощность двигателя. Данные можно найти в паспорте или на табличке, прикрепленной к корпусу агрегата. Если они отсутствуют (или не читаемы), воспользуйтесь одним из способов определения мощности, описанных в предыдущих статьях.

Работая с электродвигателем, соблюдайте правила техники безопасности. Не допускайте его перегрева и следите, чтобы он эксплуатировался в подходящих условиях. При поломке агрегата или первых признаках неисправности проведите технический осмотр и устраните неполадки. Если проблема слишком серьезная, и вы не можете справиться с ней самостоятельно, обратитесь к специалисту. Срок службы двигателя зависит от множества факторов, но в ваших силах свести к минимуму возможность поломки и сделать так, чтобы устройство работало долго и эффективно.

Источник

Рекомендации по выбору вида, типа и мощности двигателя электропривода

При работе электропривода с длительной постоянной нагрузкой задача выбора электродвигателя (постоянного тока, асинхронного, синхронного) относительно проста.

Для электропривода, не требующего регулирования скорости в больших диапазонах ее изменения, рекомендуется применять синхронные двигатели. Эта рекомендация объясняется тем, что современный синхронный двигатель пускается в ход также быстро как и асинхронный, а его габариты меньше и работа экономичнее, чем асинхронного двджигателя той же мощности (у синхронного двигателя выше коэффициент мощности cosφ и больше максимальный момент Mmax на валу).

Читайте также:  Гофра для пылесоса samsung с регулятором мощности

При этом у асинхронных двигателей последнего поколения можно достаточно эффективно регулировать скорость вращения, осуществлять реверс с необходимым моментом для работы электропривода, но для этого применяются специальные устройства управления.

Но если электродвигатель привода должен работать в условиях регулируемой частоты вращения, реверса, частых пусков, больших изменений нагрузки, то при выборе вида двигателя необходимо сопоставить условия работы электропривода с особенностями механических характеристик различных видов электродвигателей.

В электротехнике принято различать естественную и искусственную механические характеристики двигателя. Естественная характеристика соответствует номинальным (рабочим) условиям его включения, нормальной схеме соединений и отсутствию каких-либо добавочных элементов в цепях двигателя и соединении этих цепей по специальным схемам.

Важным критерием для оценки механических характеристик электродвигателя служит их жесткость:

где: ΔM — изменение момента на валу двигателя;

Δn — изменение скорости вращения ротора двигателя.

В зависимости от значения жесткости принято делить механические характеристики на абсолютно жесткие, Δn = 0,λ = ∞ (синхронные двигатели), жесткие, у которых изменение частоты вращения мало λ = 40 ÷ 10 (линейная часть характеристики асинхронного двигателя, характеристика двигателя постоянного тока с параллельным возбуждением), мягкиес большим изменением частоты вращения, у которых λ ≤ 10 (характеристика двигателя постоянного тока с последовательным возбуждением, искусственная характеристика асинхронного двигателя с фазным ротором, искусственная характеристика двигателя постоянного тока с параллельным возбуждением).

На рис. 1 представлены естественные механические характеристики различных видов двигателей.

Требования к жесткости механической характеристики в ряде случаев являются основанием для выбора вида двигателя.

При частых пусках и непостоянной нагрузке наиболее надежным, экономичным и простым в эксплуатации является асинхронный двигатель с короткозамкнутым ротором. При больших мощностях, если невозможно применить коротко-замкнутый асинхронный двигатель, устанавливается асинхронный двигатель с фазным ротором.

Двигатель постоянного тока сложнее по конструкции (из-за наличия коллекторно-щеточного узла), стоит дороже, требует более тщательного ухода в эксплуатации и изнашивается быстрее, чем двигатель переменного тока. Однако, в ряде случае предпочтение отдается двигателю постоянного тока, позволяющему простыми средствами изменить частоту вращения электропривода в широких пределах.

Тип двигателя (его конструкцию) выбирают в зависимости от условий окружающей среды. Приходится учитывать необходимость защиты среды от возможных искрообразований в двигателе (при наличие взрывоопасной атмосферы), а также самих двигателей от попадания в них влаги, пыли, химических веществ из окружающей среды.

Во многих случаях в приводах необходимо регулировать скорость вращения ротора двигателя.

Для регулирования частоты вращения двигателя существует два надежных, но существенно несовершенных метода:

  1. включение резисторов в цепи якорных обмоток ротора;
  2. переключение числа пар полюсов обмотки статора.

Первый метод рационален лишь при узких пределах регулирования при постоянстве момента на валу двигателя, а второй обеспечивает лишь дискретное (ступенчатое) регулирование и практически применяется в основном для маломощных приводов.

В настоящее время благодаря появлению мощных полупроводниковых приборов положение в этой области существенно изменилось. Современные электронные преобразователи дают возможность изменять в широком диапазоне частоту переменного тока, что позволяет плавно регулировать скорость вращающегося магнитного поля, а следовательно эффективно регулировать частоту вращения асинхронного и синхронного двигателей.

Оптимальный выбор мощности электродвигателя для привода должен удовлетворять следующим требованиям:

  1. надежность в работе;
  2. возможность работоспособного состояния в различных условиях;
  3. экономичность в эксплуатации.

Установка двигателя большей мощности, чем это необходимо по условиям работы привода, вызывает излишние потери энергии при работе электрической машины, обуславливает дополнительные капитальные вложения, увеличение массы и габаритов двигателя.

Установка электродвигателя меньшей мощности снижает производительность электропривода и делает его работу ненадежной. При этом сам электродвигатель в подобных условиях может быть поврежден.

Электродвигатель необходимо выбирать так, чтобы его мощность использовалась возможно полнее. Во время работы двигатель не должен нагреваться до предельно допустимой температуры, в крайнем случае на очень непродолжительное время. Кроме того, двигатель должен нормально работать при возможных временных перегрузках и развивать пусковой момент на валу тот, который требуется для нормального функционирования исполнительного механизма.

В соответствии с этим мощность двигателя выбирается в большинстве случаев на основании условий нагревания до предельно допустимой температуры. Производится так называемый выбор мощности по нагреву. Затем осуществляется проверка соответствия перегрузочной способности двигателя условиям пуска машины и временным перегрузкам. Иногда, при большой кратковременной перегрузке, приходится выбирать двигатель, исходя из требуемой максимальной мощности. В подобных условиях максимальная мощность двигателя длительное время, как правило, не используется.

Выбор мощности для привода с продолжительным режимом работы при постоянной или незначительно меняющейся нагрузке на валу является простым. В этом случае мощность двигателя должна быть равна мощности нагрузки, а проверки на перегрев и перегрузку во время работы электропривода не нужны (это объясняется изначально определенными условиями работы электродвигателя). В тоже время необходимо проверить, достаточен ли пусковой момент на валу двигателя для пусковых условий данной электрической машины.

Мощность продолжительной нагрузки определяется на основании проверенных практикой теоретических расчетов.

Рассмотрим конкретный пример. Например, мощность двигателя для вентилятора (и не только его, а любого двигателя) можно определить, как

где: V — количество нагнетаемого воздуха, м 3 /с 2 ;

Δр — перепад давления, Па;

ηвен — коэффициент полезного действия (КПД) вентилятора (у крыльчатых вентиляторов он равен 0,2 ÷ 0,35);

ηпер — КПД передачи от двигателя к крыльчатке вентилятора.

В приведенной формуле произведение VΔр рпредставляет собой полезную мощность вентилятора, а 1000 — коэффициент для перевода мощности в киловатты.

В инженерных расчетах для определения мощности электродвигателя привода при продолжительной его работе используют электрические (полученные экспериментальным путем) формулы, проверенные длительной практикой.

При кратковременном, повторно-кратковременном и продолжительном с переменной нагрузкой режимах работы электропривода важно знать закон изменения во времени превышения температуры двигателя над температурой окружающей среды.

Электрическая машина с точки зрения нагревания представляет собой весьма сложное тело. Тем не менее при инженерных расчетах, не требующих большой точности, можно считать электрическую машину однородным телом.

Это дает возможность применить к ней упрощенное уравнение нагревания:

где: С — теплоемкость электрической машины;

Н — теплоотдача машины;

Q — теплота, выделяемая в машине в единицу времени.

Рассмотрим два крайних случая: t = ∞ и t = 0. При t = ∞ получим: Qodt = HVmaxdt. (4)

Решая это уравнение методом разделения переменных, получаем

где — постоянная времени нагрева машины, определяемая экспериментально.

При t = 0 начальное превышение температуры будет V = V, на основании чего постоянная A = Vmax — V, а закон нарастания превышения температуры машины будет иметь вид

Таким образом превышение температуры машины V над температурой окружающей среды возрастает по показательному закону, стремясь к значению Vmax. Значение начального превышения температуры V лишь изменяет скорость нарастания температуры, не изменяя характера процесса (рис. 2).

Читайте также:  Напишите формулу мощности переменного тока

При различных значениях продолжительной нагрузки одной и той же машины в диапазоне мощностей электродвигателя (Р1, Р2, … Рном, … Рк, … Рn) графики V(t) будут отличаться лишь ординатами (рис. 3).

Наибольшее допустимое для данной машины превышение температуры равно Vном. Прямая, параллельная оси абсцисс Vном пересекает в различных точках кривых V(t), соответствующие различным значениям нагрузки электродвигателя.

Абсцисса точки пересечения определяет тот промежуток времени tk, в течение которого мощность двигателя может быть временно равна мощности Рк, представляющей собой перегрузку по отношению к его номинальной мощности в продолжительном режиме работы. Кривая нагревания, асимптотически приближающаяся к Vном через промежуток времени tn, соответствует номинальной мощности электродвигателя Рном. При нагрузках, меньших Рном, мощность двигателя используется не полностью. Однако, если двигатель загружается до номинальной мощности только на относительно короткое время, то по сути он тоже используется не на полную мощность. Целесообразно его кратковременно перегрузить, и чем меньше продолжительность работы, тем больше должна быть эта перегрузка. Предел повышения нагрузки двигателя по мере уменьшения продолжительности включения определяется мгновенной перегрузочной мощностью двигателя, зависящей от его электромагнитных, механических и коммутационных свойств (максимального момента мощности на валу у асинхронного двигателя, условий коммутации щеточно-коллекторного узла у машин постоянного тока и т.п.).

При повторно-кратковременном режиме электродвигатель попеременно то нагревается, то охлаждается. Изменение его температуры в течение времени каждого цикла «включение — выключение» зависит при этом от предыдущего теплового состояния.

График зависимости нагревания и охлаждения машины от времени в подобных условиях показан на рис. 4.

Конечное превышение температуры каждой данной части цикла является начальным превышением температуры для последующей части цикла. Если во время той или иной части цикла наступает заметное изменение условий охлаждения электрической машины (остановка двигателя или существенное изменение частоты вращения ротора), то это изменяет значение постоянной времени нагрева машины τ, что должно быть учтено при построении графиков.

Рассмотренные методы определения мощности электродвигателя по температурным условиям посредством построения графиков нагревания требуют значительной затраты времени и трудоемких аналитических расчетов. В то же время графический метод сам по себе содержит систематические ошибки и в конце концов не дает точных результатов. Графические методы приведены выше лишь для того, чтобы наглядно показать картину изменения нагрева двигателя при переменной нагрузке.

В большинстве случаев для такого выбора мощности электродвигателя применяется более простые, так называемые инженерные расчеты, в частности эквивалентного тока. В основу метода эквивалентного тока положено допущение, что при переменной нагрузке двигателя его средние потери должны быть равны потерям при продолжительной (номинальной) нагрузке.

Как известно из теории электрических машин, мощность потерь двигателя складывается из постоянных Рпост и переменных Рпер мощностей. Мощность постоянных потерь равна сумме мощности потерь на трение, в магнитопроводе (у асинхронных двигателей и двигателей постоянного тока с параллельным возбуждением), на возбуждение у синхронных двигателей и двигателей с параллельным возбуждением. Мощность переменных потерь можно считать пропорциональной квадрату рабочего тока I двигателя и сопротивлению соответствующей обмотки r, причем приближенно можно считать последнее постоянным. Если ток изменяется за соответствующие промежутки времени, то за все рабочее время Σt=T суммарные потери энергии в двигателе будут равны

При переменной нагрузке эквивалентным током Iэк, за то же время работы электродвигателя Т потери энергии в двигателе вычисляются по более простой формуле:

Зная эквивалентный ток, номинальное напряжение и номинальный коэффициент мощности, можно определить номинальную мощность двигателя:

Метод эквивалентного тока можно применять лишь при условии постоянства мощности потерь в магнитопроводе и на трение, а также сопротивлений обмоток в течение всего рабочего времени Т.

В ряде случаев условия нагрузки определяют непосредственный момент, требуемый от двигателя, а не ток. Тогда можно пользоваться методом эквивалентного момента: у всех электродвигателей вращающий момент на валу пропорционален произведению тока и магнитного потока. У двигателей переменного тока (синхронных и асинхронных) можно приближенно считать постоянным коэффициент мощности cosφ.

При таких упрощениях можно считать вращающий момент

где Квр — постоянная величина, откуда из вышеприведенного выражения для эквивалентного тока Iэк можно получить:

Далее по эквивалентному моменту и номинальной угловой скорости двигателя ωном рассчитывается номинальная мощность двигателя электропривода:

Для повышения надежности работы электропривода рекомендуется проверить, достаточен ли максимальный момент Мх двигателя для того, чтобы удовлетворить требованиям кратковременных возможных перегрузок данного привода; иными словами должно быть выполнено следующее условие: коэффициент перегрузки двигателя λном должен быть по абсолютной величине больше отношения максимального момента Мmах нагрузки к номинальному моменту двигателя, то есть

На этом выбор типа, вида и мощности двигателя может быть закончен.

М. С. ИВАНОВ, В. Н. ДРАЧКОВ,
Санкт-ПетербургскийГосударственныйУниверситет ГражданскойАвиации (СПбГУГА).

Источник



FAQ по электродвигателям

1. Какие электродвигатели применяются чаще всего?

Наиболее распространены асинхронные электродвигатели с короткозамкнутым ротором. Они имеют сравнительно простую конструкцию и относительно недороги.

Для работы асинхронного двигателя требуется трехфазное напряжение, создающее на обмотках статора вращающееся магнитное поле. Это поле приводит в движение ротор двигателя, который передает крутящий момент на нагрузку, например, на пропеллер вентилятора или редуктор конвейера. Изменяя конфигурацию обмоток статора, можно менять основные характеристики привода – частоту оборотов и мощность на валу. В случае работы асинхронного электродвигателя в однофазной сети применяют фазосдвигающие и пусковые конденсаторы.

Асинхронный электродвигатель SIEMENS

Также в настоящее время находят применение двигатели постоянного тока. Данные приводы имеют щетки, подверженные износу и искрению. Кроме того, необходима обмотка подмагничивания (возбуждения), на которую подается постоянное напряжение. Несмотря на эти недостатки, электродвигатели постоянного тока используются там, где необходимо быстрое изменение скорости вращения и контроль момента, а также при мощностях более 100 кВт.

В быту также применяют коллекторные (щеточные) электродвигатели переменного тока, которые имеют низкую надежность по сравнению с асинхронными.

2. Какие способы управления электродвигателями используются на практике?

Управление электродвигателем подразумевает возможность изменения его скорости и мощности. Так, если на асинхронный двигатель подать напряжение заданной величины и частоты, он будет вращаться с номинальной скоростью и сможет обеспечить мощность на валу не более номинала. Если же нужно понизить или повысить скорость электродвигателя, используют преобразователи частоты. ПЧ может обеспечить нужный режим разгона и торможения, а также позволит оперативно управлять частотой работы.

Для обеспечения требуемого разгона и торможения без изменения рабочей частоты применяют устройство плавного пуска (УПП). Если нужно управлять только разгоном двигателя, используют схему включения «звезда-треугольник».

Читайте также:  Что такое машиностроительные мощности

Для запуска двигателей без ПЧ и УПП широко применяются контакторы, которые позволяют дистанционно управлять пуском, остановом и реверсом.

3. Как прозвонить электродвигатель и определить его сопротивление?

Асинхронный электродвигатель, как правило, имеет три обмотки. У каждой обмотки есть по два вывода, которые должны быть обозначены в клеммной коробке двигателя. Если выводы обмоток известны, то можно легко прозвонить каждую из них и сравнить величину сопротивления с остальными обмотками. Если величины сопротивлений отличаются не более, чем на 1%, то скорее всего, обмотки исправны.

Сопротивление обмоток электродвигателя измеряется с помощью омметра, как и сопротивление обмоток трансформатора. Чем больше мощность двигателя, тем меньше сопротивление его обмоток, и наоборот.

4. Как определить мощность электродвигателя?

Проще всего определить номинальную мощность электродвигателя по шильдику. На нем указана механическая мощность (мощность на валу), значение которой всегда меньше потребляемой мощности за счет потерь на трение и нагрев. Однако, если шильдик на корпусе двигателя отсутствует, можно очень приблизительно оценить характеристики привода по его габаритам. При одинаковой мощности двигатель с бо́льшим диаметром вала будет иметь более высокую мощность на валу и меньшую частоту оборотов.

Также мощность можно определить по нагрузке и по настройкам защитных устройств, через которые питается двигатель (мотор-автомат, тепловое реле).

Еще один способ – включаем двигатель на номинальную мощность, обеспечив нужную нагрузку на валу. После этого измеряем токоизмерительными клещами ток, который должен быть одинаков по всем обмоткам. Для приблизительной оценки мощности асинхронного двигателя, подключенного по схеме «звезда», нужно разделить номинальный измеренный ток на 2.

5. Как увеличить или уменьшить обороты электродвигателя?

Управление скоростью вращения двигателя необходимо в трех режимах работы – при разгоне, торможении, и в рабочем режиме.

Наиболее универсальный способ управления оборотами — использование частотного преобразователя. Настройками ПЧ можно добиться любой частоты вращения в пределах технической возможности. При этом можно управлять и другими параметрами электродвигателя, а также следить за его состоянием во время работы. Частоту можно менять и плавно, и ступенчато.

Управление оборотами двигателя в режиме разгона и торможения возможно при использовании УПП. Это устройство позволяет значительно снизить пусковой ток за счет плавного разгона с медленным увеличением оборотов.

6. Как рассчитать ток и мощность электродвигателя?

Бывает так, что известен ток асинхронного двигателя (по измерениям в номинальном режиме или по шильдику), но неизвестна его мощность. Как в таком случае рассчитать мощность? Обычно используют следующую формулу:

Р = I (1,73·U·cosφ·η)

где:
Р – номинальная полезная мощность на валу двигателя в Вт (указывается на шильдике),
I – ток двигателя, А,
U – напряжение питания обмоток (380 В при подключении в «звезду», 220 В при подключении в «треугольник»),
cosφ, η – коэффициенты мощности и полезного действия для учета потерь (обычно 0,7…0,8).

Для расчета тока по известной мощности пользуются обратной формулой:

I = P/(1,73·U·cosφ·η)

Для двигателей мощностью 1,5 кВт и более, обмотки которых подключены в «звезду» (это подключение используется чаще всего), существует простое эмпирическое правило – чтобы приблизительно оценить ток двигателя, нужно умножить его мощность на 2.

7. Как увеличить мощность электродвигателя?

Номинальная мощность на валу, которая указывается на шильдике двигателя, обычно ограничивается допустимым током, а значит – нагревом корпуса привода. Поэтому при увеличении мощности необходимо предпринять дополнительные меры по охлаждению электродвигателя, установив отдельный вентилятор.

При использовании преобразователя частоты для повышения мощности можно изменить несущую частоту ШИМ, однако следует избегать перегрева ПЧ. Мощность также можно увеличить с помощью редуктора или ременной передачи, пожертвовав количеством оборотов, если это допустимо.

Если приведенные советы неприменимы – придётся менять двигатель на более мощный.

8. Каковы потери мощности при подключении трехфазного двигателя к однофазной сети (380 на 220)?

При таком подключении используются пусковой и рабочий фазосдвигающие конденсаторы. Номинальную мощность на валу в данном случае получить не удастся, и потери мощности составят 20-30% от номинала. Это происходит из-за невозможности обеспечить отсутствие перекоса по фазам при изменении нагрузки.

9. Какие исполнения двигателей бывают?

В зависимости от исполнения электродвигатели классифицируются по способу монтажа, классу защиты, климатическому исполнению. Существует два основных способа монтажа асинхронных электродвигателей – на лапах и через фланец. Оба варианта исполнения в различных комбинациях показаны в таблице ниже.

Варианты монтажного исполнения электродвигателя

Виды климатического исполнения предполагают использование двигателя в определенных климатических зонах: умеренный климат (У), холодный климат (ХЛ), умеренно-холодный климат (УХЛ), тропический климат (Т), общеклиматическое исполнение (О), общеклиматическое морское исполнение (ОМ), всеклиматическое исполнение (В). Также различают категории размещения (на открытом воздухе, под навесом или в помещении и т.д.).

Класс защиты обозначает характер защиты двигателя от попадания пыли и влаги. Наиболее часто встречаются приводы с классами IP55 и IP55.

10. Зачем электродвигателю тормоз?

В некоторых устройствах (лифтах, электроталях, лебедках) при остановке двигателя необходимо зафиксировать его вал в неподвижном состоянии. Для этого применяют электромагнитный механический тормоз, который входит в конструкцию двигателя и располагается в его задней части. Управление тормозом осуществляется с помощью частотного преобразователя или схемы на контакторах.

11. Как двигатель обозначается на электрических схемах?

Электродвигатель обозначается на схемах с помощью буквы «М», вписанной в круг. Также на схемах могут быть указаны порядковый номер двигателя, количество фаз (1 или 3), род тока (переменный или постоянный), способ включения обмоток ( «звезда» или «треугольник»), мощность. Примеры обозначений показаны ниже.

Обозначение электродвигателя на схеме

12. Почему греется электродвигатель?

Двигатель может нагреваться по одной из следующих причин:

  • износ подшипников и повышенное механическое трение
  • увеличение нагрузки на валу
  • перекос напряжения питания
  • пропадание фазы
  • замыкание в обмотке
  • проблема с обдувом (охлаждением)

Нагрев двигателя резко снижает его ресурс и КПД, а также может приводить к поломке привода.

13. Типичные неисправности электродвигателей

Выделяют два вида неисправностей электродвигателей: электрические и механические.

К электрическим относятся неисправности, связанные с обмоткой:

  • межвитковое замыкание
  • замыкание обмотки на корпус
  • обрыв обмотки

Для устранения этих неисправностей требуется перемотка двигателя.

  • износ и трение в подшипниках
  • проворачивание ротора на валу
  • повреждение корпуса двигателя
  • проворачивание или повреждение крыльчатки обдува

Замена подшипников должна производиться регулярно с учетом их износа и срока службы. Крыльчатка также меняется в случае повреждения. Остальные неисправности устранению практически не подлежат, и единственный выход — замена двигателя.

Если у вас есть вопросы, ответы на которые вы не нашли в данной статье, напишите нам. Будем рады помочь!

Источник