Меню

Как изменить сопротивление изменяя напряжение

Как изменяется ток при изменении сопротивления

Как изменяется ток при изменении сопротивления

  • Как изменяется ток при изменении сопротивления
  • Как понизить силу тока
  • Как изменяется сопротивление полупроводников при изменении температуры
  • Учебник по физике 8 класса, лист бумаги, шариковая ручка.
  • Как изменить частоту токаКак изменить частоту тока
  • Как увеличить силу АмпераКак увеличить силу Ампера
  • Как изменить электрическую проводимостьКак изменить электрическую проводимость
  • В чем измеряется сопротивлениеВ чем измеряется сопротивление
  • Как зависит ток от напряжения
  • Переменный ток как понятиеПеременный ток как понятие
  • Что такое переходное сопротивлениеЧто такое переходное сопротивление
  • Как изменится энергия, если уменьшить напряжениеКак изменится энергия, если уменьшить напряжение
  • Как течет переменный ток в цепиКак течет переменный ток в цепи
  • Как рассчитать падение напряженияКак рассчитать падение напряжения
  • Как уменьшить токКак уменьшить ток
  • Как уменьшить сварочный токКак уменьшить сварочный ток
  • Как определить величину сопротивленияКак определить величину сопротивления
  • Как включать реостат в цепьКак включать реостат в цепь
  • Как определить напряжение на сопротивлениеКак определить напряжение на сопротивление
  • Как повысить силу токаКак повысить силу тока
  • Как выпрямить токКак выпрямить ток
  • Закон Джоуля-Ленца: определение, практическое значениеЗакон Джоуля-Ленца: определение, практическое значение
  • Как поднять напряжениеКак поднять напряжение
  • Как измерить сопротивление резистораКак измерить сопротивление резистора
  • Как измерить сопротивлениеКак измерить сопротивление
  • Как определить сопротивлениеКак определить сопротивление

Источник

Закон Ома понятным языком

Один из фундаментальных законов, который всегда изучают в курсе физике — это закон Ома . Он относительно простой, но при этом весьма важен для корректного понимания. Давайте изучим его в режиме «для чайников».

С пониманием как такового физического явления , обуславливающего появление закона Ома, обычно проблем не возникает. Но вот с вариантами формулировки и записи самого закона, а также аспектами, связанными с особенностями его применения в разных случаях, сложности частенько появляются.

В основе закона Ома лежит некая физическая штука, которая называется сопротивление .

Понятие сопротивление доходчиво

Электрическое сопротивление — это величина, которая определяет способность проводника пропускать электрический ток . Полезно также освежить знания про электрический ток ( писали в этой статье ).

Представить это проще всего, исходя из строения металлов.

По классической теории металл состоит из кристаллической решетки, а между структурными элементами этой решетки путешествуют свободные электроны.

Закон Ома понятным языком

Внешнее электрическое поле заставляет их перемещаться и образуется электрический ток, т.е. направленное упорядоченное движение частиц .

Решетка металла мешает им двигаться по своему объему . Электроны трутся об её узлы и не могут протиснуться. Вот это явление и образует сопротивление. Это «сила», которая мешает перемещению.

Закон Ома понятным языком

Ситуация аналогично ситечку на раковине. Вода проходит, но медленнее, чем проходила бы без ситечка.

Аналогичная ситуация присутствует во всех материалах, правда род и тип частичек может меняться. Тип строения тоже разный. Но условно можно принять, что всегда структура мешает им двигаться что в дереве, что в металле.

В некоторых телах вообще таких частичек не будет, там сопротивление бесконечное (некоторые виды резин, например).

Обратите внимание, что мы не рассматриваем тут понятие электрического тока и напряжения, т.к. это отдельные темы и если есть непонимание, обязательно напишите об этом в комментариях. Правда про электрический ток есть наше видео . Эти вещи нужно четко понимать.

Закон Ома понятным языком

Ну и из сказанного очевидно, что сопротивление будет зависеть от геометрических параметров проводника (т.е. площадь сечения S, длина l) и типа проводника (который тут описывается понятием удельное сопротивление и является табличной величиной). Ещё оно зависит от температуры (чем выше тем больше для большинства тел), но это мы совсем от самого закона уходим. Для задачек на закон Ома знаний уже вполне достаточно.

Формулировка закона Ома

В результате множества экспериментов Ом вывел зависимость, которая определяет связь между силой тока в проводнике, напряжением и тем самым сопротивлением, которое мы описали выше.

Закон Ома понятным языком

Вроде как все слова тут понятные, если знать все определения. Сопротивление мы разобрали. Сила тока — это, грубо говоря, количество частичек, которое окажется в проводнике. Понятие сила тока подробно я разбирал в этой статье , обязательно прочитайте её.

Напряжение — это «поток», который эти частицы несет. Вот вроде бы всё и увязали.

Если рассматривать цепь, то сопротивление по элементам распределяется согласно их техническим характеристикам и вычисляется согласно закону Ома. Т.е. мы не можем утверждать, что на каждом элементе есть одинаковое сопротивление.

Например, если в цепи с последовательным подключением две лампочки, т омы помним что сила тока во всей цепи при таком соединении одинаковая, а вот напряжение на элементах разное. Замеряем его на точках подключения лампочек, записываем и запихиваем в закон Ома. Вот всё и посчитали :).

Закон Ома для участка цепи

Когда закон ома записан в такой форме, как мы привели выше, то он называется закон ома для участка цепи .

Почему для участка цепи? Для участка, потому что тут не учитывается сопротивление всей цепи. Можно измерить сопротивление на каждом участке исходя из приведенных характеристик.

Читайте также:  Как изменится модуль запирающего напряжения

Закон Ома для полной цепи

Полной цепью (в отличие от участка цепи, применительно к которому мы излагали всё выше) называется цепь с учетом источника тока .

Почему это важно?

Именно потому, что если мы представим себе электрическую цепь условно как систему труб для воды, то участок цепи это будет незамкнутый кусок трубы, а полная цепь — зацикленная система .

Из примера может показаться, что участок цепи есть незамкнутая в электрическом смысле цепь. Нет, пример приведен не для этого. И там, и там электрическая цепь замкнута.

Просто нам нужно обозначить, что без учета источника тока и его внутреннего сопротивления (r) цепь не полная, а расчёт не всегда способен учитывать все значимые характеристики.

Ну а внутреннее сопротивление , как вы наверное догадались — это то сопротивление, которым обладает источник тока. Да, току в цепи сложно проходить и через сам источник! Даже сам источник провоцирует энергетические потери. А вот считать его аналогично расчёту для участка цепи нельзя.

Получается, что в закон Ома добавится ещё и внутренне сопротивление. И всё! Ничего страшного.

Закон Ома понятным языком

Формулировка закона Ома для полной цепи немного изменится. Теперь у нас слово напряжение заменится словом ЭДС (электродвижущая сила), а слово сопротивление заменится суммой внешнего сопротивления цепи и внутреннего сопротивления источника тока. Ну и формула будет такая:

Закон Ома понятным языком

Добавилось понятие электродвижущая сила (ЭДС) , обозначенная в формуле E прописное. Что это за зверь?

ЭДС — это, по сути дела, и есть напряжение.

Разница в том, что если мы опять сравним напряжение с напором воды в водопроводе, то напряжением будет являться разница напора между двумя произвольными точками в водопроводе, а ЭДС — это напор на насосе, который качает воду.

При использовании термина ЭДС мы вспоминаем, что у источника есть внутреннее сопротивление, как оно есть и у насоса, который препятствует движению воды через самого себя. Если же мы считали бы именно напряжение источника, то мы бы приняли, что система идеальная и источник движению тока сам не препятствует.

Закон Ома в дифференциальной и интегральной формах

При изучении закона Ома могут выплывать ещё и такие понятия, как закон Ома в дифференциальной и интегральной формах .

Всё это большие темы, поэтому мы рассмотрим их в отдельных статьях.

Тут отметим лишь то, что в дифференциальной форме закон Ома применяется для определения параметров для ничтожно малого участка цепи . Ведь превалирует слово дифференциал или производная.

Закон Ома понятным языком

В интегральной же форме мы рассматриваем цепь с учетом источника тока или без него. Аналогично тому, как мы писали выше. Помним, что интеграл по своей сути — есть сумма.

Закон Ома понятным языком

Если статья оказалась для вас полезной, то обязательно поддержите наш проект лайком и подпиской 😉 !

Источник



Падение напряжения на резисторе: формула расчета

Падение напряжения на резисторе

Компоненты электрической цепи

Резистор — элемент в электрической цепи, служащий для снижения напряжения на выходе. Его название происходит от лат. «resisto» – «сопротивляюсь». Из этой статьи вы узнаете, как с помощью резисторов понижается напряжение, об их характеристиках, а также о том, как произвести расчёт резистора, гасящего ток для понижения напряжения.

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Читайте также:  Генератор выдает постоянное напряжение

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Закон Ома для электрической цепи

В основе расчёта входного и выходного напряжения цепи лежит закон Ома, знакомый ещё со школы по курсу физики. Базовая формула расчёта напряжения на участке цепи выглядит так:

закон-ома

Определить напряжение в цепи переменного тока можно по следующей формуле:

в этой формуле Z означает сопротивление (Ом), которое было получено на протяжении всей цепи.

В ряде случаев показатели не могут быть рассчитаны по этим фармулам напрямую.

  1. В случаях нахождения проводников или диэлектриков под воздействием высокого напряжения.
  2. В случаях быстро изменяющихся электромагнитных полей при прохождении токов высокой частоты. В этом случае требуется учитывать также инерцию переносящих заряд частиц.
  3. В условиях возникновении свойств сверхпроводимости, если цепи работают при экстремально низких температурах.
  4. При нагреве проводника протекающим по нему током.
  5. Для светодиодов. Зависимость между током и падением напряжения в этом случае нелинейная.
  6. Для процессов в устройствах на основе полупроводников.

В зависимости от того, как элементы включены в цепь – последовательно или параллельно – общее сопротивление рассчитывают по-разному.

Параллельное и последовательное подключение

Расчёт при последовательном подключении

При последовательном соединении элементы идут друг за другом, и выход предыдущего соединяется с входом последующего. Общее сопротивление в этом случае можно посчитать по формуле:

R1…Rn – сопротивления n-элементов (Ом).

Расчёт при параллельном подключении

При параллельном соединении оба элемента цепи включаются параллельно друг другу. Сопротивление в этом случае получают через дробь, формула для его расчёта выглядит так:

R1 … Rn – сопротивления n-элементов (Ом).

Внимание! При разработке схем устройств обычно используются комбинированные соединения. Для расчёта сопротивления схема упрощается, и общее сопротивление сперва определяется для участков с параллельным соединением, а потом суммируется как для цепи с последовательными соединениями элементов.

Для упрощения и ускорения расчётов можно это сделать онлайн.

Единица измерения сопротивления резистора

В Международной системе единиц (СИ) сопротивление измеряется в омах – единице измерения, названной так в честь физика Георга Ома, который также открыл знаменитый закон для электрической цепи. Международное обозначение выглядит так: Ω. Физический смысл этой единицы заключается в следующем:

Сопротивление проводника равно 1 Ом при силе тока, равной 1 А, и напряжении на концах проводников, равном 1 В.

Оно может быть измерено с помощью прибора, называющегося омметр.

Для справки. В системе СГС сопротивление не имеет определённого названия, но в её расширениях используются статом (1 statΩ; рассчитываетсся как ток 1 статампер разделить на напряжение 1 статвольт) и абом (1 abΩ = 1*10 -9 Ом, наноом; его расчёт – ток 1 абампер разделить на напряжение величиной 1 абвольт). Размерность этой величины в СГСЭ и гауссовой системе равна TL −1 , в СГСМ — LT −1 . Обратная величина – электропроводность, её единица измерения – сименс (См), статсименс или абсименс для разных систем соотвественно.

Существует большое разнообразие резисторов с широкой линейкой стандартных величин сопротивления. Рассмотрим соотношение этих номиналов и различные приставки, использующиеся для их обозначения.

Приставка кило- (килоом):

1 КОм равен 1000 Ом

Приставка мега- (мегаом):

1 МОм соответствует 1000 КОм или 1 000 000 Ом

Часто показатели резисторов наносятся непосредственно на их корпус. Это очень удобно. Рассмотрим обозначение их номиналов более подробно.

Читайте также:  Схема полумостового преобразователя сетевого напряжения

Резисторы с маркировкой

Номинал резистора – это то же самое, что его сопротивление. Раньше резисторы были достаточно крупными, поэтому все значения прописывались целиком на их корпусах с использованием обычных букв. Помимо сопротивления на резисторе могли указать ещё и класс точности или мощность рассеивания.

Сопротивление – основная характеристика резистора. О том, что оно из себя представляет и как рассчитывается, было рассказано выше, поэтому сейчас подробнее остановимся на особенностях их обозначений.

Для простановки значения, не привышающего 1КОм после цифры, обозначающей величину сопротивления, ставится R (или величина указывается совсем без буквы). На резисторах, выпускавшихся давно, можно встретить слово Ом. Позже принятая маркировка изменилась, теперь она используется в формате:

целая величина – R – дробный остаток

300 = 300 Ом
200 R = 200 Ом

Современные обозначения выглядят так:

4R02 = 4,02 Ом
2R2 = 2,2 Ом

Если значение меньше 1 ома, то ноль в начале обозначения опускают:

Если сопротивление больше тысячи ом, то применяются специальные приставки (мега-, кило-) для упрощения написания. Очень большие значения этой величины почти не встречаются, поэтому необходимость в префиксах Тера- и Гига- возникает крайне редко. Примеры обозначений:

K200 = 200 Ом
2К0 = 2 КОм = 2000 Ом
M200 = 0,2 МОм = 200 KОм = 100 000 Ом
3М0 = 3 МОм = 3 000 КОм = 3 000 000 Ом

Дополнительно можно рассмотреть следующую характеристику – удельное сопротивление.

Бывает, что возникает необходимость также рассчитать удельное сопротивление. Оно измеряется величиной Ом*м.

Для однородного проводника вычисляемое удельное сопротивление находится так:

l — длина отрезка проводника (м),

S — площадь сечения проводникового элемента (м 2 )

Подробнее о буквенной маркировке резисторов читайте здесь.

Характеристика мощности резистора

Мощность электрического тока на участке цепи можно узнать через произведение силы тока для него и напряжения на данном участке. Формула имеет следующий вид:

P= I * U (произведение силы тока и напряжения), где

P – значение мощности (Вт).

Резистор совершает работу по снижению силы тока, при этом он выделяет тепло в окружающее пространство. Но если работа по ограничению тока очень велика и тепло вырабатывается слишком быстро, то он перегреется и может сгореть, так как не будет успевать его рассеивать. Следует учитывать этот момент, подбирая мощность резистора

Важно! Мощность резистора – это очень важный параметр, который обязательно нужно учитывать при разработке электрических схем устройств Мощность резистора характеризуется максимальной величиной силы тока, которую он может выдерживать без перегрева и не выходя из строя.

Расчет мощности резистора

Определим мощность резистора на примере схемы с включённой нагрузкой. Например, мы имеем ток, равный 0,4А, а падение напряжения на резисторе составляет 5В. Значит, расчёт будет выглядеть следующим образом:

Следовательно, здесь потребуется резистор, мощность которого не ниже двух ватт. Лучше, если эта характеристика будет чуть выше, чтобы резистор не перегревался и не вышел из строя.

Как понизить напряжение с помощью резистора

Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость снизить входное напряжение. Проще всего этого можно добиться, используя схему с двумя резисторами, более известную как делитель напряжения. Классическая схема выглядит так:

Делитель напряжения

В этом случае напряжение подаётся на два резистора с использованием параллельного подключени, а на выходе его получают с одного. Подбор номиналов резисторов осуществляют по формуле так, чтобы напряжение, снимаемое на выходе, составляло какую-то часть от подаваемого. Расчет резистора для понижения напряжения можно воспользовавшись формулой, основанной на законе Ома:

Uвх – напряжение на входе, В;

Uвых – напряжение на выходе, В

R1 – показатель сопр. 1-ого резистора (Ом)

R2 – показатель сопр. 2-ого элемента, (Ом)

Подбор резистора для понижения напряжения

Для подбора нужного сопротивления резистора можно воспользоваться готовыми онлайн-калькуляторами или программами для моделирования работы электронных схем. Симуляторы электрических цепей способны не только рассчитать напряжение на выходе в зависимости от сопротивления элементов и способа их подключения, но и обладают функционалом, позволяющим визуализировать то, как падает ток и напряжение на резисторе. Например, приложение EveryCircuit позволяет изменять в схеме параметры элементов, выбирать скорость симуляции, получать данные в различных точках. При этом можно наблюдать за динамикой изменения значений, используя для ввода входных параметров вращающийся лимб в нижнем правом углу.

EveryCircuit

Существует ещё ряд бесплатных программ для эмуляции, позволяющие выполнить, в том числе, расчёт резистора при понижении напряжения, например:

  • EasyEDA;
  • Circuit Sims;
  • DcAcLab;

В статье мы ознакомились с понятием сопротивления, узнали о его единицах измерения, о маркировке резисторов, о программах эмулирующих работу цепи и облегчающих подбор нужного сопротивления, а также рассмотрели примеры расчёта падения напряжения на резисторе.

Источник