Меню

Как изменить полярность выходного напряжения

Инверторы полярности напряжения (- + / + -)

Иногда для питания устройства требуется иметь двуполярное напряжение. При этом обычно основным является источник положительного напряжения, а цепь отрицательного является вспомогательной (маломощной). Если конструкция предназначена для автономного питания, иметь две батареи неудобно.

Получить дополнительное напряжение (любой полярности) можно при помощи трансформатора, подключенного к выходу микросхемы, работающей в режиме автогенератора. С вторичной обмотки этого трансформатора напряжение выпрямляется и подается на схему. Мощность такого источника не может превышать 0,5. 1 Вт.

Второй способ получения дополнительного напряжения отрицательной полярности показан на рис. 5.25.

Конденсаторный преобразователь обеспечивает получение стабилизированного отрицательного напряжения, величина которого зависит от Un и типа примененной микросхемы стабилизатора DA2 (6 В или 9 В для микросхем соответственно 78L06 (КР1157ЕН602) и 78L06 (КР1157ЕН902)). Ток в цепи нагрузки не должен превышать 20 мА.

В том случае, если требуется иметь в цепи с инверсным напряжением большой ток (до 4 А), можно воспользоваться схемой преобразователя с более мощным выходным каскадом, выполненным на двух комплементарных полевых транзисторах, рис. 5.26.

Инверторы полярности напряжения (- + / + -)

Рис. 5.25. Схема для получения двухполярного напряжения от одного источника

Применение в выходном каскаде мощных полевых МДП-транзисторов с индуцированным каналом (MOSFET) позволяет увеличивать рабочую частоту такого преобразователя до 100. 500 кГц — это дает возможность уменьшить габариты устройства, а также обеспечить более высокий КПД преобразования по сравнению с каскадом, выполненным на биполярных транзисторах.

Еще одна схема инвертора показана на рис. 5.27. Она позволяет повысить отрицательное напряжение относительно источника питания за счет возникающей в катушке э.д.с. противоположной Полярности после закрывания ключа ѴТ1. Транзистор ѴТ1 подойдет любой с P-каналом, не имеющий внутри диода между стоком и истоком, или же потребуется установить дополнительный диод (Шотки), показанный на схеме пунктиром.

Схема мощного инвертора напряжения

Рис. 5.26. Схема мощного инвертора напряжения.

Схема повышающего напряжение инвертора напряжения

Рис. 5.27. Схема повышающего напряжение инвертора напряжения.

В зависимости от необходимого минимального тока нагрузки (I„), выбранной рабочей частоты преобразователя (F) и скважности импульсов (D), минимальная допустимая индуктивность дросселя L1 определяется по формуле:

формула

где Un — напряжение питания.

Литература: Радиолюбителям: полезные схемы, Книга 5. Шелестов И.П.

Источник

Пара слов о «полярности» переменного напряжения

Комплексные числа полезны для анализа цепей переменного тока, поскольку они предоставляют удобный метод символьной записи сдвига фаз между параметрами переменного тока, такими как напряжение и ток.

Однако большинству людей нелегко понять эквивалентность абстрактных векторов и реальных параметров схемы. Ранее в данной главе мы видели, как источники переменного напряжения задаются значениями напряжения в комплексной форме (амплитуда и угол фазы), а также обозначением полярности.

Поскольку у переменного тока нет параметра «полярности», как у постоянного тока, эти обозначения полярности и их связь с углом фазы могут вводить в заблуждение. Данный раздел написан с целью, прояснить некоторые из этих вопросов.

Напряжение, по своей сути, – относительная величина. Когда мы измеряем напряжение, у нас есть выбор, как подключить вольтметр или другой измерительный прибор к источнику напряжения, поскольку есть две точки, между которыми существует разность потенциалов, и два измерительных щупа у прибора, которые необходимо подключить.

В цепях постоянного тока мы явно обозначаем полярность источников напряжения и падений напряжения, используя символы «+» и «-«, а также используем измерительные щупы с цветовой маркировкой (красный и черный). Если цифровой вольтметр показывает отрицательное постоянное напряжение, мы знаем, что его измерительные щупы подключены «обратно» напряжению (красный провод подключен к «-«, а черный провод – к «+»).

Полярность батарей обозначается специфичными для них символами: короткая линия батареи всегда является отрицательной (-) клеммой, а длинная линия – всегда положительной (+):

Рисунок 1 Общепринятое обозначение полярности батареи Рисунок 1 – Общепринятое обозначение полярности батареи

Хотя было бы математически правильно представить напряжение батареи в виде отрицательного значения с обозначением обратной полярности, но это было бы явно необычно:

Рисунок 2 Совершенно нестандартное обозначение полярности Рисунок 2 – Совершенно нестандартное обозначение полярности

Читайте также:  Напряжение между лопатками психосоматика

Интерпретация таких обозначений могла бы быть проще, если бы обозначения полярности «+» и «-» рассматривались как контрольные точки для измерительных щупов вольтметра, «+» означал бы «красный», а «-» означал бы «черный». Вольтметр, подключенный к указанной выше батарее красным щупом к нижней клемме и черным щупом к верхней клемме, действительно будет указывать отрицательное напряжение (-6 вольт).

На самом деле, эта форма обозначения и интерпретации не так уж необычна, как вы могли подумать: она часто встречается в задачах анализа цепей постоянного тока, где знаки полярности «+» и «-» сначала рисуются согласно обоснованному предположению, а затем интерпретируются как правильные или «обратные» в соответствии с математическим знаком рассчитанного значения.

Однако в цепях переменного тока мы не имеем дело с «отрицательными» значениями напряжения. Вместо этого мы описываем, в какой степени одно напряжение совпадает или не совпадает с другим по фазе: т.е. по сдвигу по времени между двумя сигналами. Мы никогда не описываем переменное напряжение как отрицательное по знаку, потому что возможность полярной записи позволяет векторам указывать в противоположных направлениях.

Если одно переменное напряжение прямо противоположно другому переменному напряжению, мы просто говорим, что одно напряжение на 180° не совпадает по фазе с другим.

Тем не менее, напряжение между двумя точками является относительным, и у нас есть выбор, как подключить прибор для измерения напряжения между этими двумя точками. Математический знак показаний вольтметра постоянного напряжения имеет значение только в контексте подключений его измерительных щупов: к какой клемме подключен красный щуп, а к какой клемме подключен черный щуп.

Кроме того, угол фазы переменного напряжения имеет значение только в контексте знания, какая из этих двух точек считаются «опорной». Поэтому, чтобы дать заявленному углу фазы точку отсчета, на схемах часто указываются обозначения полярности «+» и «-» на клеммах переменного напряжения.

Показания вольтметра при подключении измерительных щупов

Давайте рассмотрим эти принципы более наглядно. Во-первых, связь между подключением измерительных щупов со знаком на показаниях вольтметра при измерении постоянного напряжения:

Рисунок 3 Цвета измерительных щупов служат ориентиром для интерпретации знака (+ или -) показаний измерителя Рисунок 3 – Цвета измерительных щупов служат ориентиром для интерпретации знака (+ или -) показаний измерительного прибора

Математический знак на дисплее цифрового вольтметра постоянного напряжения имеет значение только в контексте подключения его измерительных проводов. Рассмотрим возможность использования вольтметра постоянного напряжения для определения того, складываются ли два источника постоянного напряжения друг с другом или вычитаются друг из друга, предполагая, что на обоих источниках нет маркировки их полярности.

Использование вольтметра для измерения на первом источнике:

Рисунок 4 Положительные (+) показания указывают, что черный это (-), красный это (+) Рисунок 4 – Положительные (+) показания указывают, что черный – это (-), красный – это (+)

Этот результат первого измерения +24 на левом источнике напряжения говорит нам, что черный провод вольтметра действительно подключен к отрицательной клемме источника напряжения № 1, а красный провод вольтметра действительно подключен к положительной клемме. Таким образом, мы узнаем, что источник №1 – это батарея, включенная следующим образом:

Рисунок 5 Полярность источника 24 В Рисунок 5 – Полярность источника 24 В

Измерение другого неизвестного источника напряжения:

Рисунок 6 Отрицательные (-) показания указывают, что черный это (+), красный это (-) Рисунок 6 – Отрицательные (-) показания указывают, что черный – это (+), красный – это (-)

Второе измерение вольтметром показало отрицательные (-) 17 вольт, что говорит нам о том, что черный измерительный щуп на самом деле подключен к положительной клемме источника напряжения № 2, а красный измерительный провод подключен к отрицательной клемме. Таким образом, мы узнаем, что источник №2 – это батарея, включенная в противоположную сторону:

Рисунок 7 Полярность источника 17 В Рисунок 7 – Полярность источника 17 В

Для любого, знакомого с постоянным током, должно быть очевидно, что эти две батареи противодействуют друг другу. Противоположные напряжения, априори, вычитаются друг из друга, поэтому, чтобы получить общее напряжение на обоих батареях, мы вычитаем 17 вольт из 24 вольт и получаем 7 вольт.

Но мы могли бы изобразить два источника в виде невзрачных прямоугольников, помеченных точными значениями напряжений, полученными с помощью вольтметра, и маркировкой полярности, указывающей на положение измерительных щупов вольтметра:

Читайте также:  Что может случиться с холодильником после скачка напряжения

Рисунок 8 Показания вольтметра, как они отображались на нем Рисунок 8 – Показания вольтметра, как они отображались на нем

Важность маркировки полярности

В соответствии со схемой на рисунке 8 (выше) обозначения полярности (которые указывают на положение измерительного щупа вольтметра) указывают, что источники складываются друг с другом. Источники напряжения складываются друг с другом, чтобы сформировать общее напряжение, поэтому мы добавляем 24 вольта к -17 вольтам, чтобы получить 7 вольт: всё еще правильный ответ.

Если мы позволим маркировке полярности определять наше решение, складывать или вычитать значения напряжения (независимо от того, представляют ли эти маркировки полярности истинную полярность или только положение измерительного провода вольтметра), и включим математические знаки этих значений напряжений в наши расчеты, результат всегда будет правильным.

Опять же, маркировка полярности служит ориентиром для размещения математических знаков значений напряжений в правильном контексте.

То же самое верно и для переменного напряжения, за исключением того, что математический знак заменяется углом фазы. Чтобы связать друг с другом несколько переменных напряжений с разными углами фазы, нам нужна маркировка полярности, чтобы обеспечить систему отсчета для углов фаз этих напряжений.

Возьмем, к примеру, следующую схему:

Рисунок 9 Угол фазы заменяет знак plus-minus Рисунок 9 – Угол фазы заменяет знак ±

Маркировка полярности показывает, что эти два источника напряжения складываются друг с другом, поэтому для определения общего напряжения на резисторе мы должны сложить значения напряжения 10 В 0° и 6 В ∠ 45° вместе, чтобы получить 14,861 В 16,59 °.

Однако было бы вполне приемлемо представить 6-вольтовый источник как 6 В 225°, с обратной маркировкой полярности, и при этом получить такое же общее напряжение:

Рисунок 10 Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180 Рисунок 10 – Переключение проводов вольтметра на источнике 6 В изменяет угол фазы на 180°

6 В 45° с минусом слева и плюсом справа – это точно то же самое, что 6 В ∠ 225 ° с плюсом слева и минусом справа: изменение маркировки полярности идеально дополняет добавление 180° к значению угла фазы:

Рисунок 11 Изменение полярности добавляет 180 к углу фазы Рисунок 11 – Изменение полярности добавляет 180° к углу фазы

В отличие от источников постоянного напряжения, где полярность определяется символами из линий, у переменных напряжений нет собственного обозначения полярности. Следовательно, любые знаки полярности должны быть включены в качестве дополнительных символов на схему, и не существует единственного «правильного» способа их размещения.

Однако они должны коррелировать с заданными углами фаз, чтобы представлять истинное фазовое соотношение одного напряжения с другими напряжениями в цепи.

Источник



Бестрансформаторные преобразователи полярности напряжения.

Как получить от однополярного блока питания, аккумулятора или батарейки
напряжение обратной полярности.

Итак — у нас есть однополярный блок питания, либо как-либо иной элемент постоянного напряжения, но нам необходим ещё один источник того же напряжения, но обратной полярности для того, чтобы в сухом остатке поиметь двуполяный агрегат.
Ясен пень, что лезть внутрь готового БП нам неохота, доматывать ещё одну обмотку трансформатора — ещё больше неохота. А охота нам посидеть, подумать, а там глядишь — да и спаять инвертор напряжения, т. е. устройство, которое преобразует полярность имеющегося напряжения на обратную.

Схема включения микросхемы ICL7660

Конечно, проще всего эту затею реализовать на специализированной микросхеме, такой как — ICL7660.

Рис.1 Схема включения микросхемы ICL7660

Микросхема ICL7660 — это слаботочный (до 20мА выход) инвертор напряжения, который преобразует положительное напряжение питания в отрицательное, иначе говоря — преобразователь полярности напряжения. Схема включения очень простая, содержит минимальное количество внешних элементов и в настройке не нуждается.
Может использоваться в устройствах с малым потреблением и ограниченными массогабаритными характеристиками.
Интегральная микросхема ICL7660 работает в диапазоне напряжений 1,5. 10 В, а ICL7660A — 1,5. 12 В.
Собственный ток потребления преобразователя полярности — не более 80-170 мкА.
Частота переключения — 10 кГц.
КПД — 98%.
Если напряжение питания меньше 3,5 В, то выход 6 микросхемы необходимо заземлить.

Читайте также:  Увеличение напряжения сварочного инвертора

При желании всё ж таки изготовить инвертор полярности из дискретных элементов, предварительно следует ознакомиться с принципом работы большинства подобных устройств — преобразователями на коммутируемых конденсаторах. Принцип работы преобразователя на двух электронных ключах поясняет схема, приведённая на Рис.2.

Рис.2 Схема преобразования полярности на электронных ключах

Переключателями S1 и S2 управляют два противофазных сигнала.
Когда замкнуты «контакты» переключателя S1 (и разомкнуты S2), конденсатор С1 заряжается от источника питания через диод VD2 до уровня Uпит минус падение напряжения на открытом диоде VD2.
Затем, когда «контакты» переключателя S1 размыкаются, a S2 замыкаются, конденсатор С1 оказывается подключённым к конденсатору С2 через диод VD1. Вследствие этого происходит его разрядка на конденсатор С2. Напряжение на конденсаторе С2 увеличится на некоторую величину, определяемую соотношением номиналов С1 и С2 и через нескольких периодов переключений достигнет установившегося значения ≈ Uпит — 2Uпр.д.

Практическая реализация преобразователя полярности показана на Рис.2 справа. Здесь в качестве переключателей S1 и S2 использованы два комплементарных транзистора, управляемые одним общим сигналом в противофазе.

Если убрать из схемы накопительный конденсатор С2 и посмотреть сигнал на минусовом выводе преобразователя осциллографом, то мы увидим на нагрузке прямоугольный сигнал отрицательной полярности со скважностью, равной скважности управляющих импульсов.
А если добавить ещё один каскад (с такими же ключами и диодами), работающий в противофазе с первым, то на нагрузке будет чистый минусовой уровень с наносекундными выбросами в моменты переходных процессов, связанных с инерционностью полупроводников.
В этом случае, помимо значительного снижения уровня пульсаций выходного напряжения, достигается и эффект удвоения мощности устройства.

Большинство преобразователей, описанных в разнообразных источниках, выполнены на биполярных транзисторах, что не позволяет им достигать высоких значений КПД в связи со значительными величинами токов, требуемых им в цепях управления. Из этих соображений схемы, приведённые ниже, выполнены на ключевых MOSFET транзисторах, а потому при отсутствии нагрузки — имеют потребление тока, близкое к нулю.

Рис.3 Схема преобразования полярности на цифровых КМОП элементах

Схема, изображённая на Рис.3, представляет собой слаботочный инвертор напряжения с выходным током — до 30. 40 мА.
Использование в качестве генератора микросхемы триггера шмитта CD4093 (КР1561ТЛ1) позволило снизить собственный ток потребления преобразователя до значений — не превышающих 100 мкА.
Микросхемы CD4049 (КР1561ЛН2) представляют собой пару электронных ключей, работающих в противофазе, что обеспечивает низкий уровень пульсаций выходного напряжения, а так же двойную мощность преобразования по сравнению с одиночным ключом (Рис.2).
Выбор в качестве диодов D1. D4 диодов шоттки с малым падением прямого напряжения позволило снизить разницу между разнополярными напряжениями до значений 0,5. 0,6В.

При необходимости получить от преобразователя полярности токи, исчисляемые сотнями миллиампер, электронные ключи следует выполнить на MOSFET транзисторах, имеющими малое сопротивление открытого канала и позволяющими работать с мощностями, значительно превышающими возможности инверторов CD4049 (Рис.4).

Рис.4 Схема преобразования полярности на MOSFET транзисторах

Максимальный выходной ток преобразователя определяется величинами максимально допустимых токов используемых транзисторов.
При напряжении питания 12В и токе нагрузки, не превышающем 50мА, выходное напряжение составляет величину -11,4В. При дальнейшем увеличении тока нагрузки, модуль выходного напряжения начинает падать и при 200мА составляет величину 11В.
Напряжение высокочастотных пульсаций в нагрузке не превышает значений 10. 20мВ.
Применять сильно мощные полевики в данной схеме не рекомендуется из-за значительного снижения КПД, связанного с большими значениями входных ёмкостей таких полупроводников. Следствием этих ёмкостей будет являться затягивание фронтов управляющих сигналов, что в свою очередь приведёт к протеканию значительных сквозных токов через транзисторы.
При необходимости увеличить мощность инвертора имеет смысл совместить схемы с Рис.3 и Рис.4, т.е. подключить затворы мощных MOSFET-ов к выходам запараллеленных инверторов DD2 и DD3.

Источник