Меню

Измерение мощности люминесцентной лампы

Люминесцентные лампы и их характеристики (Часть1)

С.И. Паламаренко, г Киев

Классификация люминесцентных ламп, характеристики обычных люминесцентных ламп, зависимость параметров ламп от напряжения сети, зависимость характеристик от окружающей температуры и условий охлаждения, изменение характеристик люминесцентных ламп в процессе горения, энергоэкономичные люминесцентные лампы, зарубежные люминесцентные лампы, компактные люминесцентные лампы, безэлектродные люминесцентные лампы.

Классификация люминесцентных ламп

Люминесцентные лампы (ЛЛ) делятся на осветительные общего назначения и специальные. К ЛЛ общего назначения относят лампы мощностью от 15 до 80 Вт с цветовыми и спектральными характеристиками, имитирующими естественный свет различных оттенков. Для классификации ЛЛ специального назначения используют различные параметры. По мощности их разделяют на маломощные (до 15 Вт) и мощные (свыше 80 Вт); по типу разряда на дуговые, тлеющего разряда и тлеющего свечения; по излучению на лампы естественного света, цветные лампы, лампы со специальными спектрами излучения, лампы ультрафиолетового излучения; по форме колбы на трубчатые и фигурные; по светораспределению с ненаправленным светоизлучением и с направленным (рефлекторные, щелевые, панельные и др.).

Маркировка обычно состоит из 2-3 букв. Первая буква Л означает люминесцентная. Следующие буквы означают цвет излучения: Д — дневной; ХБ — холодно-белый; Б — белый; ТБ — теплобелый; Е — естественно-белый; К, Ж, 3, Г, С — соответственно красный, желтый, зеленый, голубой, синий; УФ — ультрафиолетовый. У ламп с улучшенным качеством цветопередачи после букв, обозначающих цвет, стоит буква Ц, а при цветопередаче особо высокого качества — буквы ЦЦ. В конце ставят буквы, характеризующие конструктивные особенности: Р — рефлекторная, У — U-образная, К — кольцевая, А — амальгамная, Б — быстрого пуска. Цифры обозначают мощность в ваттах. Маркировка ламп тлеющего разрада начинается с букв ТЛ.

Характеристики обычных ЛЛ

В табл.1 приведены характеристики наиболее распространенных ЛЛ дневного света. Обозначения: Р — мощность; U -напряжение на лампе; I — ток лампы; R -световой поток; S — световая отдача.

Зависимость параметров ламп от напряжения сети

При изменении напряжении сети в пределах + 10% изменение параметров лампы можно определить из соотношения dX/X = Nx dUc/Uc, где X — соответствующий параметр лампы; dX — его изменение; Nx — коэффициент для соответствующего параметра. Для схемы с дросселем коэффициенты имеют следующие значения: для силы света Ni = 2,2; для мощности Np = 2,0; для светового потока Nф = 1,5. В схеме с емкостно-индуктивным балластом величины Nx несколько меньше.

При падении напряжения сети ниже допустимого ухудшаются условия перезажигания. Повышение напряжения выше допустимого вызывает перекал катодов и перегрев пускорегулирующих устройств. И в том, и в другом случае происходит значительное сокращение срока службы ламп.

Размеры, мм (рис.1) L1 L2 D

Зависимость характеристик от окружающей температуры и условий охлаждения

Изменение температуры трубки по сравнению с оптимальной как в сторону увеличения, так и в сторону уменьшения, вызывает снижение светового потока, ухудшение условий зажигания и сокращение срока службы. Надежность зажигания стандартных ламп при работе со стартерами начинает особенно заметно падать при температурах ниже -5°С и при понижении напряжения сети. Например, при -10°С и напряжении сети 180 В вместо 220 В число незажигающихся ламп может доходить до 60-80%. Такая сильная зависимость делает применение ЛЛ в помещениях с низкими температурами неэффективным.

Повышение температуры относительно оптимальной может происходить при повышении температуры окружающей среды и при работе ламп в закрытой арматуре. Перегрев ЛЛ кроме уменьшения светового потока сопровождается некоторым изменении их цвета. На рис.2 показана зависимость параметров ЛЛ от температуры окружающей среды.

Изменение характеристик ЛЛ в процессе горения

В первые часы горения происходит некоторое изменение электрических характеристик ламп, связанное с доактивиров-кой катодов, выделением и поглощением различных примесей. Эти процессы обычно заканчиваются на первой сотне часов. В течение остального срока службы электрические характеристики изменяются очень незначительно. Происходит постепенное уменьшение яркости свечения люминофора и светового потока лампы (рис.3: кривая 1 для ЛЛ 40 Вт, кривая 2 для ЛЛ 15 и 30 Вт). В некоторых лампах уже спустя несколько сотен часов горения начинают появляться темные налеты и пятна у концов трубки, связанные с распылением катодов. Они свидетельствуют о плохом качестве ламп.

Энергоэкономичные люминесцентные лампы (ЭЛЛ)

ЭЛЛ предназначены для общего освещения и полностью взаимозаменяемы со стандартными ЛЛ мощностью 20, 40 и 65 Вт в существующих осветительных установках без замены светильников и пускорегулирующей аппаратуры. Они имеют стандартную длину, стандартные значения рабочих токов и напряжений на лампах и те же или близкие значения световых потоков, что и у стандартных ламп соответствующей цветности при пониженной на 10% мощности (18, 36 и 58 Вт). Внешне ЭЛЛ отличаются от стандартных ламп только меньшим диаметром (26 мм вместо 38 мм). За счет уменьшения диаметра снижается расход основных материалов (стекло, люминофор, газы, ртуть и др.).

Для обеспечения того же падения напряжения на лампах при уменьшении их диаметра пришлось применить для наполнения смесь аргона с криптоном и снизить давление до 200-330 Па (вместо обычных 400 Па в стандартных лампах). В ЭЛЛ возрастает температура трубки до 50°С, но создавать специальные условия для охлаждения не требуется. Люмино-форный слой в ЭЛЛ находится в более тяжелых рабочих условиях, поэтому наиболее подходящими для этих ламп являются редкоземельные люминофоры. Однако такие люминофоры примерно в 40 раз дороже стандартного галофосфата кальция (ГФК), поэтому и лампы с такими люминофорами в несколько раз дороже обычных. Для снижения стоимости ламп применяют двухслойное покрытие. Сначала на стекло наносят ГФК, а поверх него редкоземельный люминофор небольшой толщины.

Промышленность выпускает ЭЛЛ мощностью 18, 36 и 58 Вт цветностей ЛБ, ЛДЦ и ЛЕЦ со световыми параметрами, совпадающими с параметрами обычных ЛЛ тех же цветностей мощностью 20, 40 и 65 Вт. Под маркой ЛБЦТ выпускаются ЭЛЛ с трехком-понентной смесью редкоземельных люминофоров со сроком службы 15000 ч.

Зарубежные фирмы выпускают ЭЛЛ трех-четырех стандартизованных цветовых тонов и с двух-трехкомпо-нентной смесью редкоземельных люминофоров. В табл.2 приведены параметры некоторых типов ЭЛЛ в колбах диаметром 26 мм фирмы OSRAM (Германия).

Компактные люминесцентные лампы (КЛЛ)

В начале 80-х годов стали появляться многочисленные типы компактных ЛЛ мощностью от 5 до 25 Вт со световыми отдачами от 30 до 60 лм/Вт и сроками службы от 5 до 10000 ч. Часть типов КЛЛ предназначена для непосредственной замены ламп накаливания. Они имеют встроенную пускорегулирующую аппаратуру и снабжены стандартным резьбовым цоколем Е27.

Разработка КЛЛ стала возможной только в результате создания высокостабильных узкополосных люминофоров, активированных редкоземельными элементами, которые могут работать при более высоких поверхностных плотностях облучения, чем в стандартных ЛЛ. За счет этого удалось значительно уменьшить диаметр разрядной трубки. Что касается сокращения габаритов ламп в длину, то эта задача была решена путем разделения трубок на несколько более коротких участков, расположенных параллельно и соединенных между собой либо изогнутыми участками трубки, либо вваренными стеклянными патрубками.

Читайте также:  Мощность понижающие трансформаторы 220 12 вольт

Источник

Как выбрать люминесцентную лампу

От качества освещения зависит самочувствие и настроение домочадцев и гостей дома. В офисных помещениях параметры освещенности оказывают влияние на работоспособность и утомляемость сотрудников. Люминесцентные лампы — один из самых распространенных источников света для бытовых и офисных светильников. В статье рассмотрим их принцип действия, преимущества, основные разновидности, маркировку и параметры, по которым следует выбирать энергосберегающие лампочки для создания качественного освещения.

Как устроена люминесцентная лампа

Основная деталь люминесцентной газоразрядной лампы низкого давления — стеклянная трубка, которой придают разную форму:

  • линейную — длиной до 1.5 м, для получения равномерного рассеянного освещения;
  • спиральную и U-образную — для компактности;
  • круглую (кольцевидную) — для декоративных светильников.

lm02.png

С двух сторон трубки, изнутри покрытой люминофором, располагаются электроды, между которыми при подаче напряжения возникает дуговой разряд. Горение дуги внутри колбы поддерживается благодаря инертному газу, обычно аргону, с добавлением ртутных паров. Атомы ртути под воздействием потока электронов излучают невидимые глазу лучи в ультрафиолетовом диапазоне. Под их воздействием люминофор, расположенный на внутренних стенках колбы, начинает испускать видимый свет. Цветовая температура свечения люминесцентной лампы зависит от состава люминофора.

lm03.png

Газовая среда внутри колбы в холодном состоянии имеет высокое электрическое сопротивление. Для зажигания газоразрядной дуги при включении требуется подать на электроды импульс высокого напряжения. Горящая дуга, наоборот, обладает отрицательным дифференциальным сопротивлением и для предотвращения короткого замыкания необходим балласт, подключенный в цепь последовательно с электродами. В современных светильниках используют электронные пускорегулирующие аппараты — ЭПРА, которые управляют зажиганием и горением дуги. А компактные лампы с винтовым цоколем уже имеют ЭПРА, встроенный прямо в корпус, поэтому их можно включать напрямую в сеть 220 В.

lm04.png

В светильниках старого образца в качестве балласта используется ЭмПРА — электромагнитный аппарат для пуска и регулирования на основе дросселя, имеющего индуктивное сопротивление, и неонового стартера.

ЭПРА имеет ряд преимуществ перед ЭмПРА:

  • исключает заметное для глаз мерцание света благодаря питанию лампы током высокой частоты;
  • снижает потребления электроэнергии — до 25%;
  • помогает продлить ресурс ламп.

Поэтому их часто приобретают для модернизации ранее установленных светильников с электромагнитными дросселями.

lm05.png

Сфера применения и преимущества люминесцентных ламп

Ровный, близкий к естественному, рассеянный свет люминесцентных ламп оптимально подходит в качестве основного освещения жилых, офисных и производственных помещений различного назначения. Их устанавливают в:

  • квартирах, лифтах и на лестничных площадках;
  • учебных аудиториях и школьных кабинетах;
  • общественных и медицинских учреждениях;
  • торговых, спортивных и концертно-развлекательных комплексах.

С их помощью подсвечивают лайтбоксы и другие светящиеся рекламные панели.

lm06.png

Такая популярность люминесцентных ламп объясняется их преимуществами перед лампами накаливания:

  • экономичностью — при одинаковой светоотдаче они потребляют в несколько раз меньше электроэнергии, КПД этих ламп достигает 80 %, в то время как у широко используемых ламп накаливания он не превышает 12 %;
  • долговечностью;
  • меньшему тепловыделению;
  • возможностью выбора оттенка свечения.

При одинаковой потребляемой мощности люминесцентные лампы способны светить в пять раз ярче и служить в 12-20 раз дольше обычных ламп накаливания.

Их используют в настольных, настенных и подвесных светильниках различной конструкции и дизайна.

Влияние цветовой температуры и интенсивности света на цветовосприятие

Из школьного курса физики известно, что твердые тела при нагревании до высоких температур начинают испускать свет, оттенок которого в зависимости от степени нагрева меняется от красного до ослепительно-белого. Это свойство зависимости цвета излучаемого свечения от интенсивности нагрева использовали для характеристики искусственного света, введя в обращение параметр “цветовая температура”. Она указывает значение по шкале Кельвина (сокращение — К), до которого следует разогреть черное твердое тело, чтобы оно начало излучать белый свет такого оттенка.

lm07.png

Субъективная оценка человека света определенного оттенка называется цветоощущением. Цветовая температура оказывает влияние на эмоциональное состояние и работоспособность человека. Теплые тона расслабляют и создают уютную атмосферу, благоприятную для отдыха. Холодные бодрят и повышают производительность труда.

lm08.png

Другим немаловажным параметром является индекс цветопередачи. Он показывает, как воспроизводятся в данном свете цвета предметов по сравнению с солнечным светом. В зависимости от состава люминофора, используемого производителями, этот показатель у люминесцентных ламп может быть в пределах 60-98 Ra (из 100) — чем выше, тем лучше цветопередача. Приборы, у которых этот показатель ниже 80, применяют только в подсобных помещениях.

Следует учитывать особенности человеческого цветовосприятия, которое меняется в зависимости от интенсивности света. При слабой освещенности естественнее выглядит теплый белый свет. С увеличением яркости лучше воспринимаются холодные оттенки белого.

Цветовую температуру лампы выбирают под особенности помещения:

  • в гостиной или столовой лучше освещение, максимально приближенное к дневному и с хорошей цветопередачей;
  • для кабинета или кухни предпочтительнее холодный белый свет — он помогает концентрировать внимание на выполнении работы;
  • в спальню подойдут теплые цветовые тона, способствующие расслаблению.

В любом случае, учитывайте собственные предпочтения, ведь цветовосприятие у каждого человека индивидуально.

Разновидности люминесцентных ламп низкого давления и особенности их выбора

Существует большая группа люминесцентных ламп специального назначения, отличающихся в основном спектром излучаемого света, например:

  • фитолампы — для подсвечивания комнатных и аквариумных растений;
  • цветные — для декоративного оформления и получения световых эффектов, примером могут служить лампы с розовым оттенком для подсветки мясных прилавков;
  • с улучшенной цветопередачей — для художественных мастерских, музеев, магазинов текстильных товаров и т. п.;
  • ультрафиолетовые — с колбой из особого стекла, пропускающего УФ-лучи, в зависимости от типа излучения применяются для дезинфекции в медучреждениях, мягкого загара в соляриях, флуоресцентных детекторах денежных купюр и т. п.

Подробнее остановимся на самых распространенных люминесцентных лампах, применяемых для освещения помещений. Их можно классифицировать по форме трубки и типу цоколя.

Линейные люминесцентные лампы с двусторонним двухконтактным цоколем типа G

При выборе следует учесть, что лампы дневного света, как их традиционно принято называть, отличаются геометрическими параметрами в зависимости от мощности:

  • длиной — от 37 до 120 см;
  • диаметром колбы — Т12, Т8 и Т5, где цифра обозначает количество ⅛ долей дюйма, например, Т8 значит D=25 мм;
  • размером цоколя — G5 и G13 (расстояние между контактными штырями 5 и 13 мм соответственно).

lm09.png

Наибольшее распространение получили линейные люминесцентные лампы с цоколем G13. Они могут иметь мощность от 10 до 70 Вт, но в основном применяются три варианта:

  • 18 W — длиной 590 мм;
  • 30 W — 900 мм;
  • 36 W — 1200 мм.

Более тонкие лампы с колбами Т4 диаметром 12,5 мм (мощность от 6 до 24 Вт) и Т5 — 16 мм (6 — 28 Вт) оснащаются цоколем G5.

lm10.png

На картинке видна маркировка. Первая цифра «840» указывает индекс цветопередачи в 8х10=10 Ra, вторая и третья — цветовую температуру лампы 40х100= 4000 К. Светильники для ламп дневного света оснащаются электромагнитными или электронными пускорегулирующими устройствами.

Читайте также:  Полная тепловая мощность системы отопления

Компактные люминесцентные лампы (экономки) с винтовым цоколем типа Е

По сравнению с лампами накаливания, люминесцентные потребляют примерно в пять раз меньше электроэнергии при одинаковой светоотдаче, поэтому их часто называют энергосберегающими. Для уменьшения габаритных размеров трубку с люминофором свивают в спираль или разделяют на несколько сегментов, придавая ей различные формы.

lm11.png

Компактные лампы имеют ЭПРА, встроенный прямо в корпус, поэтому их можно включать прямую в сеть 220-230 В вместо обычных лампочек накаливания в стандартный винтовой патрон (эдисоновский). Цоколь может быть трех типоразмеров:

  • Е14 — “миньон”, имеет резьбу диаметром 14 мм, часто используется в настенных и потолочных декоративных светильниках;
  • Е27 — стандартный бытовой размер (27 мм);
  • Е40 — увеличенный диаметр резьбы (40 мм) под промышленный винтовой патрон, в быту практически не применяется.

lm13.png

Выбирая замену старой лампочке учитывайте, что люминесцентная в 15 Вт создает световой поток, аналогичный 60-ваттной лампе накаливания.

lm14.png

Компактные люминесцентные лампы с цоколем G23

У компактных люминесцентных ламп с безрезьбовым цоколем G23 и дугообразной колбой в форме буквы U сравнительно небольшая мощность — от 5 до 14 Вт, что эквивалентно 20–70 Ваттам у лампочек накаливания.

Такой источник света крепится в патроне на двух штырьках, расстояние между которыми составляет 23 мм.

lm15.png

Матовое покрытие создает мягкое равномерное свечение, не раздражая глаза, поэтому подходит для прозрачных плафонов. Их часто применяют в настольных светильниках с современным дизайном.

У люминесцентных ламп с цоколем G23 имеется встроенный в корпус стартер, для работы им требуется внешний электромагнитный дроссель, устанавливаемый в светильнике.

Компактные люминесцентные лампы с односторонним четырехконтактным цоколем 2G7

В отличие от других компактных, такая лампа не имеет встроенных электронных устройств, хотя форма трубки и габаритные размеры аналогичны лампам с цоколем G23. Предназначена для настольных и настенных светильников с ЭПРА или ЭмПРА.

lm17.png

Нюансы выбора люминесцентных ламп

Если Вы ищете лампу для замены, то в первую очередь нужно определить модели, совместимые с имеющимся светильником. Для этого загляните в инструкцию осветительного прибора, где обычно указан тип и параметры подходящих источников света. Если такой возможности нет, выкрутите старую лампочку и используйте маркировку на ней для выбора новой с аналогичными параметрами. При отсутствии маркировки используйте иллюстрации из этой статьи для визуального определения разновидности лампы.

Для совместимости лампы и светильника важны тип цоколя и габариты колбы. Убедиться в полном соответствии типоразмера цоколя можно проведя несложные замеры — цифры в его обозначении равны расстоянию в миллиметрах между контактными штырьками или диаметру винтовой части.

Чтобы получить максимальный эффект при использовании осветительных приборов, при выборе ламп для них необходимо учитывать все основные параметры:

  • световой поток — измеряется в люменах. Чем больше этот показатель, тем большую площадь может осветить лампа;
  • мощность — характеризует в первую очередь потребление электроэнергии и косвенно интенсивность свечения, которая во многом зависит от применяемой технологии производства;
  • цветовая температура — важный параметр, влияющий на комфортность длительного нахождения в комнате с искусственным освещением, работоспособность, утомляемость и эмоциональный фон;
  • цветопередача — выбрав лампу с хорошей цветопередачей, можно визуально изменить привычную окружающую обстановку, сделав цвета более яркими и насыщенными.

    В интернет-магазине Максидом Вы сможете подобрать подходящую люминесцентные лампы и другие товаров для освещения и приобрести товары по выгодной цене с доставкой.

    Читайте также

    Журнальный стол для гостиной: виды, критерии выбора

    Фонари: виды, принципы работы, критерии выбора

    Скоро включат отопление — выбираем увлажнитель воздуха

    Источник

    

    Размеры люминесцентных ламп

    Среди различных газоразрядных источников освещения, лампы дневного света низкого давления занимают ведущее место, благодаря своей широкой популярности. Они отличаются качественным спектральным составом, высокой световой отдачей и большими сроками эксплуатации. Чаще всего используются линейные люминесцентные лампы, размеры которых дают возможность применять их во многих областях.

    1. Конструкция люминесцентной лампы
    2. Размеры и эффективность
    3. Виды ламп дневного света
    4. Пускорегулирующая аппаратура
    5. Параметры ламп и их маркировка
    6. Сетевое напряжение и мощность лампы

    Конструкция люминесцентной лампы

    Высокие показатели световой отдачи выдает дуговой разряд в ртутных парах, сочетаясь с ультрафиолетовым излучением, преобразующимся в слое люминофора. В результате, по сравнению с обычной лампочкой, получается более ровный и устойчивый свет, максимально приближенный к естественному освещению. Лампа линейная люминесцентная относится к газоразрядным светильниками низкого давления.

    Размеры люминесцентных ламп

    Основным конструктивным элементом является стеклянная колба со стандартными диаметрами 12, 16, 26 и 38 мм. В обычных лампах она имеет прямую форму, а в компактных применяется более сложная конфигурация. На концах цилиндра установлены стеклянные ножки, герметично впаянные в торцы. Они предназначены для размещения электродов, изготовленных из вольфрамовой проволоки. В свою очередь, электроды соединяются методом пайки со штырьками цоколя.

    Во внутреннем пространстве колбы создается вакуум, после чего сюда закачивается инертных газ, чаще всего аргон. К нему добавляется небольшое количество ртути или ртутного сплава. Поверхность электродов покрывается активными веществами, содержащими окислы бария, кальция, стронция и других элементов. Их работа заметно влияет на коэффициент пульсации.

    Под действием приложенного напряжения в газовой среде возникает разряд электричества, значение которого ограничено компонентами пускорегулирующей аппаратуры. Одновременно из электродов начинает испускаться поток электронов, подвергающих ионизации атомы ртути. В результате, возникает видимое свечение и ультрафиолетовое излучение, невидимое обычным зрением. Далее, ультрафиолет попадает на слой люминофора, покрывающего внутреннюю поверхность колбы. Под его воздействием возникает световое излучение в видимой части спектра.

    Свечение лампы происходит за счет электрического разряда (в меньшей степени) и светящегося люминофорного покрытия, выдающего основную часть светового потока. В зависимости от состава люминофора можно получать любые цвета, начиная от обычного белого, и заканчивая разнообразными тонами и оттенками, количество которых постоянно увеличивается.

    Размеры и эффективность

    Для того чтобы получить максимальный эффект от электрического разряда, во внутреннем пространстве колбы должна поддерживаться определенная температура. В этом случае ультрафиолетовое излучение ртутных паров будет наибольшим. Данный параметр напрямую связан с диаметром колбы. Дело в том, что плотность тока во всех лампах должна быть примерно одинаковой. Этот показатель определяется путем деления величины тока на площадь сечения стеклянного цилиндра.

    В связи с этим, лампы с колбами одинакового диаметра, но с различной мощностью, способны работать при одном и том же номинальном токе. Между падением напряжения и длиной цилиндра существует прямая пропорциональная зависимость, определяющая класс энергоэффективности. То есть, чем длинее лампа, тем выше ее мощность, что наглядно отражено на рисунке. При диаметре Т5 и 13 т длина составит 52 см, 21 ватт – 85 см, 28 ватт – 115 см. Диаметр Т8 и мощность 15 ватт соответствуют длине 44 см.

    Большие размеры люминесцентных ламп изначально делали их не совсем удобными в использовании, поскольку им требовались и светильники с аналогичными габаритами. Производители всегда хотели уменьшить это соотношение, используя различные способы. Однако нельзя было просто снизить длину колбы и увеличить ток разряда, чтобы достичь установленной мощности. Это привело бы к возрастанию температуры внутри колбы и увеличению давления ртутных паров. При таких параметрах световая отдача ламп заметно снижается.

    Читайте также:  Регулятор мощности для управления двигателем

    Инженерная мысль пошла другим путем, и размеры изделий были снижены путем изменения их конфигурации. Длинные цилиндры сгибались пополам или соединялись в кольцо, что позволило получить источники света U-образной и кольцевой формы с уменьшенными габаритами без потерь мощности. Одновременно удалось повысить коэффициент мощности и снизить коэффициент пульсации.

    Окончательно проблема разрешилась лишь с появлением люминофоров, устойчивых к высоким электрическим нагрузкам. В результате, диаметр колб значительно снизился и достиг 12 мм. Общая длина ламп еще больше сократилась за счет многократных изгибов тонких стеклянных цилиндров. Появились компактные изделия, с таким же внутренним устройством и принципом работы, как у обычных ламп линейного типа.

    Виды ламп дневного света

    Все стандартные люминесцентные лампы разделяются на два основных типа – высокого и низкого давления, определивших различия и особенности конструкции каждого из них. Описание каждой из них приложено в инструкции по эксплуатации.

    Первый вариант представлен лампами ДРЛ, получившими широкое распространение в уличных светильниках. Они отличаются высокой мощностью и низкой цветопередачей, поэтому и применяются на больших площадях, где не требуется высокое качество света. Существуют изделия с повышенной светоотдачей и различной цветовой гаммой. Они используются в качестве мощных точечных источников света и декоративной подсветки, выделяющей архитектурные элементы зданий.

    Более всего оказалась востребована люминесцентная лампа низкого давления, которая используется повсеместно – в быту и на производстве. Преимущественно, это изделия цилиндрической формы, успешно заменяющие традиционные лампы накаливания. В настоящее время рынок электроники все больше заполняется компактными люминесцентными лампами. Независимо от конструкции, все они работают вместе со пускорегулирующей аппаратурой электромагнитного или электронного типа, снижающей коэффициент пульсации. Последний вариант представляет собой миниатюрную электронную схему, способную разместиться в цоколе лампы.

    Пускорегулирующая аппаратура

    Любые типы газоразрядных ламп не могут быть напрямую подключены к электрической сети. Находясь в холодном состоянии, они обладают высоким уровнем сопротивления и для создания разряда им требуется импульс высокого напряжения. После того как появляется разряд в осветительном устройстве возникает сопротивление с отрицательным значением. Для его компенсации нельзя обойтись простым включением сопротивления в цепи. Это приведет к короткому замыканию и выходу из строя источника освещения.

    Для преодоления энергетической зависимости, вместе с лампами дневного света применяются балласты или пускорегулирующая аппаратура.

    С самого начала и до сих пор в светильниках применяются устройства электромагнитного типа – ЭмПРА. Основой прибора служит дроссель, обладающий индуктивным сопротивлением. Он подключается вместе со стартером, обеспечивающим включение и выключение. Параллельно подключается конденсатор с высокой емкостью. Он создает резонансный контур, с помощью которого формируется продолжительный импульс, зажигающий лампу.

    Существенным недостатком такого балласта является высокое потребление электроэнергии дросселем. В некоторых случаях работа устройства сопровождается неприятным гудением, возникает пульсация люминесцентных ламп, отрицательно влияющая на зрение. Данная аппаратура отличается большими размерами, имеет значительный вес. Она может не запуститься при отрицательных температурах.

    Все негативные проявления, в том числе и пульсации люминесцентных ламп удалось преодолеть с появлением электронного балласта – ЭПРА. Вместо громоздких компонентов здесь использованы компактные микросхемы на основе диодов и транзисторов, что позволило заметно снизить их вес. Данное устройство также обеспечивает лампу электрическим током, доводя его параметры до нужных значений, снижая разницу в потреблении. Создается нужное напряжение, частота которого отличается от сетевой и составляет 50-60 Гц.

    На некоторых участках частота достигает 25-130 кГц, что позволило устранить мигание, негативно влияющее на зрение и снизить коэффициент пульсации. Прогрев электродов осуществляется за короткий промежуток времени, после чего лампа сразу же загорается. Использование ЭПРА существенно увеличивает срок годности и нормальной эксплуатации люминесцентных источников света.

    Параметры ламп и их маркировка

    Все типы люминесцентных ламп обладают своими параметрами и техническими характеристиками, отображаемыми в маркировке изделий. В основном это показатели мощности и цветопередачи, а также различные виды типоразмеров.

    В маркировке первая буква Л означает лампу, а следующие буквенные обозначения – это характеристика и соответствующие параметры изделия:

    • Д – дневной свет.
    • Б – белый.
    • ХБ – холодно-белый.
    • ТБ – тепло-белый.
    • Е – естественных тонов.
    • ХЕ – холодный естественный свет.
    • Г, К, З, Ж, Р – свет различных цветов и оттенков, которые более подробно отражает таблица.

    На некоторых изделиях присутствует буква Ц или ЦЦ, что соответствует люминофору с улучшенной цветопередачей.

    Цифровые обозначения наносятся по международным стандартам и включают в себя три цифры. Первая соответствует качеству цветопередачи, 2 и 3 – обозначается цветовая температура люминесцентных ламп. Чем выше первая цифра, тем лучше качество цветопередачи. Повышение остальных цифр делает оттенки цветов более холодными.

    Все люминесцентные лампы имеют размеры и диаметр отражаемый следующим образом: Т5 – диаметр 5/8 дюйма или 1,59 см; Т8 – 8/8 или полный дюйм 2,54 см; Т10 – 10/8 дюйма или 3.17 см и т.д. Штырьковые цоколи маркируются как G23, G24, G27, G53 или 2D, а резьбовые – E14, E27, E40. В первом случае цифры означают сколько будет расстояние между штырьками, а во втором – диаметр резьбы цоколей. Для более точного выбора используется специальная таблица.

    На каждом изделии указано питающее напряжение и способ его запуска. Например, маркировка люминесцентной лампы RS или rapid start указывает на отсутствие необходимости в дополнительных элементах для пуска, а вся аппаратура уже находится внутри корпуса изделия.

    Сетевое напряжение и мощность лампы

    Для нормальной работы источников освещения требуется рабочее напряжение сети 220В с частотой 50 Гц. Это стандартные параметры, отклонение от которых отрицательно влияет на технические характеристики люминесцентных ламп, снижая их функциональность и качество освещения.

    От напряжения практически полностью зависит потребляемая мощность. Его воздействие проявляется следующим образом:

    • Значительные перепады напряжения приводят к изменению мощности в люминесцентной лампе как в сторону увеличения, так и в сторону уменьшения. Даже очень мощный прибор будет слабо светить при недостаточном напряжении, произойдет снижение энергоэффективности ламп. Поэтому, прежде чем говорить о неисправности, следует замерить сетевое напряжение.
    • Резкие колебания напряжения значительно снижают качество светового потока. В случае изменения частоты возрастает коэффициент пульсации и лампа начинает мерцать.
    • Нестабильность сетевого напряжения приводит к быстрому износу и снижению работоспособности источника освещения. Колебания не должны превышать 10% от номинала, в противном случае срок службы люминесцентных ламп снизится и они быстро выйдут из строя.

    Поэтому, выбирая лампу для конкретного места хранения и установки, следует обращать внимание на то, сколько мощности она потребит. При отсутствии маркировки нужно произвести замеры и уже потом принимать решение об использовании данной лампы.

    Источник