Меню

Изготовление стабилизатора поперечной устойчивости

способ изготовления стабилизатора поперечной устойчивости легкового автомобиля

Изобретение относится к сборочному производству автомобилестроения. Способ изготовления стабилизатора поперечной устойчивости легкового автомобиля заключается в том, что из пруткового материала от 8 до 30 мм в диаметре изготавливают штангу, исключая марганцовистые стали. Штангу нагревают до температуры 900-950°С в течение 20-35 мин. Выполняют формообразование изгибов штанги в специальных оправках. Производят автоматизированный контроль рабочих параметров штанги. Штангу подают в закалочный барабан с температурой закалки 830-870°С. Штангу закаливают в воде при температуре 30-40°С при диаметре штанги от 8-25 мм. Штангу подвергают отпуску в двухзонных конвейерных печах при наибольшем интервале между закалкой и отпуском не более 4 часов при температуре 480-520°С. Производят охлаждение в воде при температуре не более 100°С или на воздухе в закрытом помещении. Остаточную деформацию снимают однократным угловым поворотом на угол 3-5° изгибов наклонных участков в течение 5-8 с. Производят установку упругих резиновых втулок, на поверхности которых производят размерную ассиметричную установку фасонных хомутов с центровым размером установки от осей отверстий фасонных хомутов в 688±1 мм. Хомуты закрепляют в пределах упругих деформаций резиновых втулок, при давлении резиновой смеси втулки на поверхность штанги от 0,5-11,5 МПа. Достигается повышение циклических напряжений стабилизаторов поперечной устойчивости легкового автомобиля. 4 ил.

способ изготовления стабилизатора поперечной устойчивости легкового автомобиля, патент № 2438883 способ изготовления стабилизатора поперечной устойчивости легкового автомобиля, патент № 2438883 способ изготовления стабилизатора поперечной устойчивости легкового автомобиля, патент № 2438883 способ изготовления стабилизатора поперечной устойчивости легкового автомобиля, патент № 2438883

Формула изобретения

Способ изготовления стабилизатора поперечной устойчивости легкового автомобиля, отличающийся тем, что выбирают прутковый материал от 8 до 30 мм в диаметре из марок пружинной стали, из которого изготавливают штангу, в соответствии с перечнем пружинных сталей, где исключают марганцовистые стали, склонные к трещинообразованию, штангу нагревают до температуры 900-950°С в течение 20-35 мин соразмерно упомянутым диаметрам заготовок, выполняют формообразование изгибов штанги в специальных оправках, производят автоматизированный контроль рабочих параметров штанги — (1032±5) мм и (192±2) мм, и/или (80±1) мм, 33-38°, штангу подают в закалочный барабан с температурой закалки 830-870°С при распределении интервала температур пропорционально диаметру прутка от 8 до 28 мм, штангу из закалочного барабана скатывают по наклонной плоскости на конвейер и далее в бак, где ее закаливают в воде при температуре 30-40°С при диаметре штанги от 8-25 мм, а при диаметре штанги более 25 мм производят закалку в трансформаторном и/или веретенном масле при температуре не более 60°С, штангу подвергают отпуску в двухзонных конвейерных печах при наибольшем интервале между закалкой и отпуском не более 4 ч при температуре 480-520°С, производят охлаждение в воде при полном взаимодействии штанги с закалочной жидкостью, при температуре не более 100°С или на воздухе в закрытом помещении, причем твердость штанги составляет НВ 370-440 (HRC 40-47) единиц, остаточную деформацию снимают после охлаждения штанги однократным угловым поворотом на угол 3-5° изгибов наклонных участков в течение 5-8 с, после чего производят установку упругих резиновых втулок, на поверхности которых производят размерную ассиметричную установку и клепку фасонных хомутов с центровым размером установки от осей отверстий фасонных хомутов в (688±1) мм, которые закрепляют в пределах упругих деформаций резиновых втулок, при давлении резиновой смеси втулки на поверхность штанги от 0,5-11,5 МПа.

Описание изобретения к патенту

Изобретение относится к сборочному производству автомобилестроения, где главной задачей является создание высококачественных узлов мелкосерийного и массового производства стабилизаторов поперечной устойчивости легкового автомобиля.

Известен аналог — стабилизатор поперечной устойчивости — Википедия, где поясняется назначение упомянутого узла — устройство в подвеске автомобиля, служащее для уменьшения боковых кренов при поворотах автомобиля.

Главной задачей стабилизатора поперечной устойчивости автомобиля является использование упругих пружин, а к недостатком аналога следует отнести отсутствие сведений о назначении главного компонента стабилизатора — прутковой пружины и вспомогательных базовых компонентов — фасонных хомутов, закрепляемых на заданном ассиметричном расстоянии, в 688±1 мм, конкретной модификации легкового автомобиля.

Поставленная задача выполняется технологическими решениями применительно к изготовлению стабилизаторов поперечной устойчивости и конструктивному подходу установки базирующих элементов крепления, которая формируется следующим образом:

способ изготовления стабилизатора поперечной устойчивости легкового автомобиля отличается тем, что выбирают прутковый материал от 8 до 30 мм в диаметре, из марок пружинной стали, из которого изготавливают штангу, в соответствии с перечнем пружинных сталей, где исключают марганцовистые стали, склонные к трещинообразованию, штангу, нагревают до температуры 900-950°C в течение 20-35 мин соразмерно упомянутым диаметрам заготовок, выполняют формообразование изгибов штанги в специальных оправках, производят автоматизированный контроль рабочих параметров штанги — 1032±5 мм и 192±2 мм, и/или 80±1 мм, 33-38°, штангу подают в закалочный барабан с температурой закалки 830-870°C при распределении интервала температур пропорционально диаметру прутка от 8 до 28 мм, штангу из закалочного барабана скатывают по наклонной плоскости на конвейер и далее в бак, где ее закаливают в воде при температуре 30-40°C при диаметре штанги от 8-25 мм, а при диаметре штанги более 25 мм производят закалку в трансформаторном и/или веретенном масле при температуре не более 60°C, штангу подвергают отпуску в двухзонных конвейерных печах при наибольшем интервале между закалкой и отпуском не более 4 часов при температуре 480-520°C, производят охлаждение в воде, при полном взаимодействии штанги, с закалочной жидкостью, при температуре не более 100°C или на воздухе в закрытом помещении, причем твердость штанги составляет НВ 370-440 (HRC 40-47) единиц, остаточную деформацию снимают после охлаждения штанги однократным угловым поворотом на угол 3-5° изгибов наклонных участков, в течение 5-8 с, после чего производят установку упругих резиновых втулок, на поверхности которых производят размерную ассиметричную установку и клепку фасонных хомутов с центровым размером установки от осей отверстий фасонных хомутов в 688±1 мм, которые закрепляют в пределах упругих деформаций резиновых втулок, при давлении резиновой смеси втулки на поверхность штанги от 0,5-11,5 МПа.

Читайте также:  Втулки заднего стабилизатора мицубиси лансер 10

Перечень чертежей: фиг.1 — вид в плане на стабилизатор поперечной устойчивости легкового автомобиля; фиг.2 — боковая проекция узла стабилизатора поперечной устойчивости легкового автомобиля; фиг.3 — вид в плане на стабилизатор поперечной устойчивости легкового автомобиля; фиг.4 — боковая проекция стабилизатора поперечной устойчивости легкового автомобиля.

Перечень цифровых обозначений в графических материалах: прутковый материал (1); фасонный хомут в сборе (2); отверстия (3 и 4); изгибы (5 и 6 и 10); наклонные участки (7 и 8), упругая резиновая втулка (9).

Способ изготовления стабилизатора поперечной устойчивости легкового автомобиля отличается тем, что:

— выбирают прутковый материал от 8 до 30 мм в диаметре, из марок пружинной стали, из которого изготавливают штангу, в соответствии с перечнем пружинных сталей, где исключают марганцовистые стали, склонные к трещинообразованию;

— штангу нагревают до температуры 900-950°C в течение 20-35 мин, соразмерно упомянутым диаметрам заготовок выполняют формообразование изгибов штанги в специальных оправках, производят автоматизированный контроль рабочих параметров штанги — 1032±5 мм и 192±2 мм, и/или 80±1 мм, 33-38°;

— штангу подают в закалочный барабан с температурой закалки 830-870°C при распределении интервала температур пропорционально диаметру прутка от 8 до 28 мм;

— штангу из закалочного барабана скатывают по наклонной плоскости на конвейер и далее в бак, где ее закаливают в воде при температуре 30-40°C при диаметре штанги от 8-25 мм, а при диаметре штанги более 25 мм производят закалку в трансформаторном и/или веретенном масле при температуре не более 60°C;

— штангу подвергают отпуску в двухзонных конвейерных печах при наибольшем интервале между закалкой и отпуском не более 4 часов при температуре 480-520°C;

— производят охлаждение в воде, при полном взаимодействии штанги с закалочной жидкостью, при температуре не более 100°C или на воздухе в закрытом помещении, причем твердость штанги составляет НВ 370-440 (HRC 40-47) единиц;

— остаточную деформацию снимают после охлаждения штанги однократным угловым поворотом на угол 3-5° изгибов наклонных участков, в течение 5-8 с;

— производят установку упругих резиновых втулок, на поверхности которых производят размерную ассиметричную установку и клепку фасонных хомутов с центровым размером установки от осей отверстий фасонных хомутов в 688±1 мм, которые закрепляют в пределах упругих деформаций резиновых втулок, при давлении резиновой смеси втулки на поверхность штанги от 0,5-11,5 МПа.

Пример выполнения способа

Способ изготовления стабилизатора поперечной устойчивости легкового автомобиля выполняют таким образом, что:

1. Выбирают прутковый материал от 8 до 30 мм в диаметре, из марок пружинной стали, из которого изготавливают штангу, в соответствии с перечнем пружинных сталей, где исключают марганцовистые стали, склонные к трещинообразованию;

2. Штангу нагревают до температуры 900-950°C в течение 20-35 мин, соразмерно упомянутым диаметрам заготовок выполняют формообразование изгибов штанги в специальных оправках, производят автоматизированный контроль рабочих параметров штанги — 1032±5 мм и 192±2 мм, и/или 80±1 мм, 33-38°;

3. Штангу подают в закалочный барабан с температурой закалки 830-870°C при распределении интервала температур пропорционально диаметру прутка от 8 до 28 мм;

4. Штангу из закалочного барабана скатывают по наклонной плоскости на конвейер и далее в бак, где ее закаливают в воде при температуре 30-40°C при диаметре штанги от 8-25 мм, а при диаметре штанги более 25 мм производят закалку в трансформаторном и/или веретенном масле при температуре не более 60°C;

5. Штангу подвергают отпуску в двухзонных конвейерных печах при наибольшем интервале между закалкой и отпуском не более 4 часов при температуре 480-520°C;

6. Производят охлаждение в воде, при полном взаимодействии штанги с закалочной жидкостью, при температуре не более 100°C или на воздухе в закрытом помещении, причем твердость штанги составляет НВ 370-440 (HRC 40-47) единиц;

7. Остаточную деформацию снимают после охлаждения штанги однократным угловым поворотом на угол 3-5° изгибов наклонных участков, в течение 5-8 с;

8. Производят установку упругих резиновых втулок, на поверхности которых производят размерную ассиметричную установку и клепку фасонных хомутов с центровым размером установки от осей отверстий фасонных хомутов в 688±1 мм, которые закрепляют в пределах упругих деформаций резиновых втулок, при давлении резиновой смеси втулки на поверхность штанги от 0,5-11,5 МПа.

Промышленная полезность предлагаемого способа

Важным значением является распределение условий технологической подготовки прутковых материалов при распределении температурных условий, формообразующих силовые напряжения, впоследствии работающих для повышения циклических напряжений стабилизаторов поперечной устойчивости легкового автомобиля.

Экономическая целесообразность нового технического решения заключается в применении мелкосерийного и серийного производства в условиях ЗАО «Мотор-Супер».

Читайте также:  Что такое стойка стабилизатора задней подвески

Официальная публикация
патента РФ № 2438883

patent-2438883.pdf

Источник

В Челябинской области запустили производство стабилизаторов для автомобилей Ford и Lada

Магнитогорская торгово-производственная компания, специализируещаяся на производстве компонентов для автопроизводителей, локализованных на территории России, запустила новую линию по производству автомобильных стабилизаторов поперечной устойчивости с улучшенными характеристиками.

Новизна технического решения заключается в технологии изготовления стабилизатора из трубы, а также вулканизации резиновых подушек непосредственно на стабилизаторе. В настоящее время из-за отсутствия в России данных технологий и оборудования, по данным компании около 85% стабилизаторов поперечной устойчивости импортируются из-за рубежа.

Продукцию планируется реализовывать на внутреннем рынке России, кроме того прорабатывается возможность экспорта продукции на европейский рынок.

Технология создания стабилизаторов поперечной устойчивости из трубы позволяет улучшить эксплуатационные характеристики продукции — увеличить срок службы на 30% и снизить вес детали на 40% в сравнении со стабилизаторами, производимыми из прутка.

Стабилизаторы производства «МТПК» используются для сборки легковых автомобилей «АвтоВАЗ» (Lada 4Х4, Lada Granta, Lada Kalina) и автомобилей представительского класса Aurus. Кроме того, компания планирует поставлять стабилизаторы для автомобилей Ford и Renault.

В 2018 году ФРП предоставил магнитогорскому производителю заем на сумму 14 млн рублей на закупку современного оборудования, еще 6 млн рублей предприятию выделил Государственный фонд развития промышленности Челябинской области. «МТПК» стала третей компанией в регионе, которая получила совместный заем федерального и регионального фондов. Общий размер инвестиций в производство составил более 30 млн рублей.

Помимо инжекционной машины, позволившей освоить новую технологию, на средства займа также были приобретены трубогибочный станок с ЧПУ для пространственной гибки и бесконтактный оптический измерительный комплекс. Этот комплекс позволяет проводить замеры геометрических показателей изделий сложных форм: пресс-форм, штампов, оснастки и т. д. и контролировать как готовые изделия, так и поступающие комплектующие. Применение оборудования для пространственного контроля геометрии (3D) широко распространено в странах Европы, Азии и Америки. Российские предприятия делают только первые шаги в данном направлении, а ООО «МТПК» — первая компания в Челябинской области, имеющая возможность работать с этой технологией.

«Нашей особой гордостью является освоение новой для предприятия технологии вулканизации эластичной опоры — подушки стабилизатора. В отличие от распространенной технологии, при которой подушку стабилизатора производят отдельным технологическим циклом, на ООО „МТПК“ её формирование происходит непосредственно на стабилизаторе», — отметил основатель компании Руслан Наурзбаев.

«Сделано у нас» — крупнейший информационный источник о достижениях России и развитии нашей страны.

Ставьте лайк, что бы читать больше материалов из нашей ленты. Подписывайтесь на канал «Сделано у нас» в Zen! https://zen.yandex.ru/sdelanounas.ru

Регистрируйтесь на нашем сайте, что бы читать все новости о развитии нашей страны (на сайте их гораздо больше чем в Zen)

Источник



Изготовление стабилизатора поперечной устойчивости

Непростая простота — стабилизаторы поперечной устойчивости

Прежде всего подумаем — а чем же плох стабилизатор поперечной устойчивости? Ведь крены он уменьшает вполне успешно — так почему же конструкторы спортивных подвесок его не используют?

Рассмотрим простую ситуацию: автомобиль с независимой подвеской едет по дороге, и неожиданно наезжает правым колесом на кирпич. Предположим, что автомобиль едет достаточно быстро, и за время наезда кузов (ввиду большой массы и, соответственно, инерции) не успевает совершить сколько-нибудь существенного вертикального перемещения. Для простоты (чтобы не рассчитывать поправки на сжатие шины) будем считать шину несжимаемой — для современных низкопрофильных шин это практически так и есть. При этом допущении, правое колесо, благодаря подвеске, совершит ход вверх, равный толщине кирпича — причем никакой стабилизатор этому помешать не сможет.

Для полностью независимой подвески без стабилизатора, удар, передаваемый на кузов машины, в этом случае будет определяться лишь жесткостью пружины правой подвески и незначительным усилием сжатия амортизатора, а левая подвеска останется неподвижной.

Совсем иное дело, если у нас имеется стабилизатор поперечной устойчивости. Ход правой подвески (на ту самую толщину кирпича) закручивает стабилизатор, и он передает дополнительное усилие на левый рычаг, пружину и амортизатор, вызывая их сжатие. Даже если жесткость стабилизатора всего лишь равна жесткости левой пружины (а во многих подвесках она намного выше — иначе стабилизатор не будет эффективен против кренов), это означает, что левая подвеска будет также пробита, правда, лишь на половину толщины кирпича. Однако, и такой ход левой подвески будет означать усиление удара, передаваемого на кузов, в полтора раза по сравнению с ситуацией без стабилизатора.

Казалось бы, ситуацию можно парировать, пропорционально ослабив пружины подвески. Но это лишь кажется — дело в том, что при одновременном нагружении правой и левой подвесок, стабилизатор не работает и подвески оказываются слишком ослабленными. То есть — машина плохо переносит поперечные волны асфальта (а тем более «лежачих полицейских») и оказывается склонна к глубоким «кивкам» при торможении. А если ослабить стабилизатор — он станет неэффективен против кренов кузова.

Причем эта ситуация для независимой подвески со стабилизатором принципиально неустранима — она либо менее комфортна, чем чистая независимая подвеска без стабилизатора, либо, при той же комфортности, хуже парирует продольную раскачку и «клевки» кузова. И чем жестче стабилизатор — тем эти неустранимые проблемы значительнее.

Читайте также:  Стабилизатор нового образца лада веста замена втулок

В качестве дополнительных минусов выступают:

— Ухудшение проходимости (частичное диагональное вывешивание) из-за разгрузки идущих вниз колес на неровностях за счет закрутки стабилизатора идущим вверх колесом противоположного борта. Именно поэтому все настоящие джипы столь склонны к кренам в поворотах, а их стабилизаторы поперечной устойчивости, если даже они имеются, очень слабы.

— Сложность настроек амортизаторов одновременно для ситуаций симметричной и несимметричной нагрузки подвесок.

Изменить конструкцию обычного городского автомобиля, практически, невозможно. Это затраты, сопоставимые с постройкой гоночного автомобиля. Единственное, что остается — настройка подвески тюнинговыми амортизаторами. По идее, можно было бы продолжить список пружинами и стабилизаторами. Однако, сторонние фирмы, производящие упругие элементы, в первую очередь, ориентируются на динамичных и агрессивных водителей. Поэтому их пружины обеспечивают уменьшение клиренса (что не всегда подходит рядовому водителю), а стабилизаторы имеют повышенную жесткость (что увеличивает компромиссы самих стабилизаторов на неровных покрытиях).

Однако, есть редкие образцы решения сложного вопроса — без стабилизаторов и без крена.

Крены в повороте можно устранить и без использования стабилизатора поперечной устойчивости. Это, в конце концов, чисто геометрическая задача — надо лишь сделать подвеску такой геометрии, чтобы при известной свободе вертикального перемещения колес треугольник, образованный точками контакта колес с дорогой и центром масс машины, имел бы строго постоянные размеры либо, если это невозможно, как можно меньше изменял бы эти размеры и сохранял неизменную высоту своей вершины (с тем, чтобы вектор центробежной силы, исходя из центра масс, проходил через эту вершину).

Это задача трудная — но вполне разрешимая не только в случае сложной многорычажной подвески с неравноплечими рычагами (как у F1), но и даже для компактной подвески McPherson. Что, как раз, блестяще доказали инженеры Ford, проектируя в 1975 году автомобиль Fiesta.

Посмотрим на рисунок — на нем изображена схема геометрии подвески Фиесты Mk1. Точки А — это оси качания нижних V-образных рычагов подвески, точки Е — шаровые шарниры этих рычагов, точки С — верхние опоры стоек МакФерсон. Поскольку размер А-С задан конструктивно кузовом машины, а нижний рычаг А-Е жесткий — треугольник А-С-Е может изменять свой размер только по стороне С-Е за счет изменения высоты амортизатора (стойки МакФерсон).

Это — как у всех машин с подвеской МакФерсон. А вот что у Фиесты не как у всех: если провести прямую из точки контакта колеса с дорогой В через ось качания нижнего рычага подвески А — она пройдет через точку фронтальной проекции центра масс машины CoG (точка D).

Это более-менее очевидно на рисунке. Менее очевиден факт, что размер А-В почти постоянен при ходах подвески. Однако, это, в целом, кажется неважным, поскольку очевидно, что при ходах колеса вверх-вниз прямая В-А-D будет изменять свой наклон относительно горизонтали, что, как кажется, приведет к искажению размера треугольника В-В-D и его смещению из центра масс машины (CoG).

Чтобы понять гениальность конструкторского фокуса, рассмотрим гипотетический крен машины, поворачивающей налево. Она могла бы наклониться наружу поворота — при этом правое колесо сместилось бы вверх (размер E-C уменьшился), а левое колесо сместилось бы вниз (размер Е-С увеличился) на одинаковую величину. Что в этом случае произошло бы с точкой пересечения двух прямых B-A — то есть точкой D?

Она, несомненно, сместилась бы в сторону от центра масс машины CoG. Но куда? В сторону, противоположную действующей центробежной силе — но при этом осталась бы в первом приближении на неизменной высоте. То есть, вектор центробежной силы по-прежнему будет проходить через точку D — несмотря на гипотетическое срабатывание подвесок! Другими словами, с точки зрения вектора центробежной силы, исходящей из центра масс машины, ничего не изменилось, треугольник не изменил свою высоту, а это значит, что крена кузова просто не может возникнуть — нет плеча, на котором бы центробежная сила совершила работу, ведь вектор проходит точно через вершину треугольника. То есть, внешнее колесо в повороте нагружается, внутреннее — разгружается, на обоих колесах появляются боковые усилия, но просадки подвесок не происходит. Крена — нет.

Трудно понять? Тогда представьте себе, что нижние рычаги подвесок начинались бы в точке D и заканчивались бы шаровым шарниром в точке B. Колеса на ухабах будут перемещаться? Будут. А крены будут? Нет — потому что треугольник B-B-D получается жестким, и нет плеча, на котором бы центробежная сила вызвала кренящий момент. Блестящая идея, и она работает на практике!

«Есть масса современных машин со стабилизаторами, которые задирают в повороте одно из колес — примерно, как старый Lotus Cortina с Джимом Кларком за рулем. Но Morgan нынче делает четырехколесные автомобили, и я хочу, чтобы в виражах они ехали на всех четырех! Мы по-прежнему в состоянии сбалансировать управляемость безо всяких там стабилизаторов, как в старые добрые времена. »

(шеф-конструктор фирмы Morgan об автомобилях Morgan Aero 8 с амортизаторами Koni, Крис Лоуренс)

Источник

Adblock
detector