Меню

Информатика 7 класс вопросы что такое алфавит что такое мощность алфавита

Что такое мощность алфавита? Как находить мощность алфавита: формула

Современные компьютерные технологии, информатика, мощность алфавита, системы исчисления и многие другие понятия имеют самые непосредственные связи между собой. Очень немногие пользователи сегодня достаточно хорошо разбираются в этих вопросах. Попробуем прояснить, что такое мощность алфавита, как ее вычислять и применять на практике. В дальнейшем это, вне всякого сомнения, может пригодиться на практике.

Как измеряется информация

Прежде чем приступить к изучению вопроса о том, какова мощность алфавита, и вообще, что это такое, следует начать, так сказать, с азов.

что такое мощность алфавита

Наверняка всем известно, что сегодня существуют специальные системы измерения каких-либо величин, на основе эталонных значений. Например, для расстояний и аналогичных величин это метры, для массы и веса – килограммы, для временных промежутков – секунды и т.д.

Но как же измерить информацию в смысле объема текста? Именно для этого и было введено понятие мощности алфавита.

Что такое мощность алфавита: начальное понятие

Итак, если следовать общепринятому правилу, что конечное значение какой-либо величины представляет собой параметр, определяющий, какое количество раз эталонная единица уложена в измеряемой величине, можно сделать вывод: мощность алфавита есть полное количество символов, использующихся для того или иного языка.

как находить мощность алфавита

Чтобы было понятнее, оставим пока вопрос о том, как находить мощность алфавита, в стороне, и обратим внимание на сами символы, естественно, с точки зрения информационных технологий. Грубо говоря, полный список используемых символов содержит литеры, цифры, всевозможные скобки, специальные символы, знаки препинания, и т.д. Однако, если подходить к вопросу о том, что такое мощность алфавита именно компьютерным способом, сюда следует включить еще и пробел (единичный разрыв между словами или другими символами).

Возьмем в качестве примера русский язык, вернее, клавиатурную раскладку. Исходя из вышесказанного, полный перечень содержит 33 литеры, 10 цифр и 11 специальных знаков. Таким образом, полная мощность алфавита равна 54.

Информационный вес символов

Однако общее понятие мощности алфавита не определяет сущности вычислений информационных объемов текста, содержащего литеры, цифры и символы. Здесь требуется особый подход.

В принципе, задумайтесь, ну вот каким может быть минимальный набор с точки зрения компьютерной системы, сколько символов он может содержать? Ответ: два. И вот почему. Дело в том, что каждый символ, будь то буква или цифра, имеет свой информационный вес, по которому машина и распознает, что именно перед ней. Но компьютер понимает лишь представление в виде единиц и нулей, на чем, собственно, и основана вся информатика.

мощность алфавита равна

Таким образом, любой символ можно представить в виде последовательностей, содержащих цифры 1 и 0, то есть, минимальная последовательность, обозначающая букву, цифру или символ, состоит из двух компонентов.

какова мощность алфавита

Сам же информационный вес, принятый за стандартную информационную единицу измерения, называется битом (1 бит). Соответственно, 8 бит составляют 1 байт.

Представление символов в двоичном коде

Итак, что такое мощность алфавита, думается, уже немного понятно. Теперь посмотрим на другой аспект, в частности, практическое представление мощности с использованием двоичного кода. В качестве примера для простоты возьмем алфавит, содержащий всего 4 символа.

В двузначном двоичном коде последовательность и их информационное представление можно описать следующим образом:

Отсюда – простейший вывод: при мощности алфавита N=4 вес единичного символа составляет 2 бита.

Если использовать трехзначный двоичный код для алфавита, например, с 8 символами, количество комбинаций будет следующим:

Иными словами, при мощности алфавита N=8 вес одного символа для трехзначного двоичного кода будет равен 3 битам.

Как находить мощность алфавита и использовать ее в компьютерном выражении

Теперь попробуем посмотреть на зависимость, которую выражает количество знаков в коде и мощность алфавита. Формула, где N – алфавитная мощность алфавита, а b – количество знаков в двоичном коде, будет выглядеть так:

То есть, 2 1 =2, 2 2 =4, 2 3 =8, 2 4 =16 и т.д. Грубо говоря, искомое количество знаков самого двоичного кода и есть вес символа. В информационном выражении это выглядит так:

Мощность алфавита, N

Количество знаков кода, b

Измерение информационного объема

Однако это были всего лишь простейшие примеры, так сказать, для начального понимания того, что такое мощность алфавита. Перейдем непосредственно к практике.

информатика мощность алфавита

На данном этапе развития компьютерной техники для набора текста с учетом заглавных, прописных и строчных букв, кириллических и латинских литер, знаков препинания, скобок, знаков арифметических действий и т.д. используется 256 символов. Исходя из того, что 256 это 2 8 , нетрудно догадаться, что вес каждого символа в таком алфавите равен 8, то есть, 8 битам или 1 байту.

Если исходить из всех известных параметров, можно с легкостью получить нужное нам значение информационного объема любого текста. Например, у нас есть компьютерный текст, содержащий 30 страниц. На одной странице располагается 50 строк по 60 любых знаков или символов, включая и пробелы.

Таким образом, одна страница будет содержать 50 х 60= 3 000 байт информации, а весь текст – 3000 х 50=150000 байт. Как видим даже небольшие тексты измерять в байтах неудобно. А что говорить о целых библиотеках?

мощность алфавита формула

В данном случае лучше переводить объем в более мощные величины – килобайты, мегабайты, гигабайты и т.д. Исходя из того, что, например, 1 килобайт равен 1024 байта (2 10 ), а мегабайт – 2 10 килобайт (1024 килобайта), нетрудно посчитать, что объем текста в информационно-математическом выражении для нашего примера составит 150000/1024=146,484375 килобайт или приблизительно 0,14305 мегабайт.

Читайте также:  Потери кпд реактивная мощность ад

Вместо послеловия

В общем и целом, это вкратце и все, что касается рассмотрения вопроса, что такое мощность алфавита. Остается добавить, что в данном описании был использован чисто математический подход. Само собой разумеется, что смысловая нагрузка текста в данном случае не учитывается.

Но, если подходить к вопросам рассмотрения именно с позиции, которая дает человеку что-то для осмысления, набор бессмысленного сочетания или последовательностей символов в этом плане будет иметь нулевую информационную нагрузку, хотя, с точки зрения понятия информационного объема, результат все равно можно вычислить.

В целом же, знания о мощности алфавита и сопутствующих понятиях не так уж и сложны для понимания и элементарно могут применяться в смысле практических действий. При этом любой пользователь практически каждый день сталкивается с этим. Достаточно привести в пример популярный редактор Word или любой другой такого же уровня, в котором используется такая система. Но не путайте его с обычным «Блокнотом». Здесь мощность алфавита ниже, поскольку при наборе текста не используются, скажем, прописные буквы.

Источник

Мощность алфавита в информатике

Описание термина

Понятие мощности алфавита находится в основании изучения информатики. Алфавитом принято называть набор многочисленных символов. Сумма всех их в определённом языке и есть алфавитная мощность. Иными словами, это количество всех символов, входящих в конкретно взятый язык. Сюда входят не только буквы, но и прочие обозначения, в частности:

  • числа;
  • спецсимволы;
  • двоеточия;
  • пробел;
  • скобки;
  • запятые;
  • точки;
  • многоточия и прочее.

Это определение считается обобщённым и не принимает во внимание вычисления информационной составляющей сообщения. Она может содержать в себе числа, знаки препинания и прочее. В этом случае прибегают к использованию другого способа. Его суть основывается на том, что любая буква, цифра или знак обладают собственным информационным объемом данных. Компьютер работает с этим информационным кодом и распознает то, что было написано.

Основным постулатом в информатике является тот факт, что устройство разбирает введённую информацию исключительно в двоичном коде в форме нуля и единицы. В итоге получается, что абсолютно любой символ алфавита может быть успешно закодирован при помощи соответствующего подбора этих двух цифровых символов. Самая маленькая последовательность, применяемая при обозначении какой-либо цифры, буквы или другого знака, состоит из двух элементов.

Информационная масса отдельно взятого символа обычно изображается в форме информационной стандартной измерительной единицы, которая называется «бит». Восемь битов становятся равны одному байту.

Отображение символов в двоичном коде

Алфавитная мощность может быть использована на практике только при наличии двоичного кода. В качестве примера можно использовать упрощённый алфавит, состоящий всего из четырёх символов. В этом случае разрядность их и информационное представление описываются следующим образом:

  • 1 — 00;
  • 2 — 01;
  • 3 — 10;
  • 4 — 11.

Из этого списка можно сделать вывод о том, что если алфавитная мощность равняется 4, то масса отдельного единичного символа будет составлять 2 бита. Если же есть алфавит, состоящий из 8 символов, то при подборе двоичного трёхзначного кода для него комбинационное количество будет следующим:

  • 1 — 000;
  • 2 — 001;
  • 3 — 010;
  • 4 — 011;
  • 5 — 100;
  • 6 — 101;
  • 7 — 110;
  • 8 — 111.

Иными словами, если алфавитная мощность равна 8, то вес отдельно взятого символа для двоичного трёхзначного кода составит 3 бита.

Вычисление мощности алфавита

Численность знаков в коде и мощность алфавита всегда выражают определённую зависимость. Для того чтобы определить информационный объём, который заключается в сообщении, прибегают к специальному способу измерения, которое выражается в формуле мощности алфавита: N = 2 в n -ной степени.

Эта формула была изобретена американским инженером Ральфом Хартли более сотни лет тому назад. Она применяется для работы с равновероятными событиями и используется для определения мощности конкретного буквенного набора, которая обозначается буквой N (информационная масса или объём). n означает численность бит в словесной единице, иными словами, количество знаков внутри двоичного кода. Так, если n равен 1, то N тоже равен 1, при n = 2 N = 4, при n = 3 N = 8, при n = 4 N = 16.

Чтобы сформулировать теорию о численности информации в набранном словосочетании, пользуются формулой I=K*i. В этом случае К обозначает численность всех символов в предложении, а i — это информационная масса символа.

При ответе на вопрос, как найти мощность алфавита, нужно сказать, что в русском языке 33 буквы, поэтому это можно выразить как N = 33. Для сравнения, аналогичный показатель в английском, немецком и французском языках равняется 26, в испанском — 27. Венгерский язык, например, является 40-символьным.

Существует также и клавиатурный язык, куда входят не только буквы, но и дополнительные знаки. Так, в русском языке есть ещё 10 цифр и 11 символов, а также пробел и пара скобок. Их мощность прибавляется к аналогичному буквенному показателю, и на выходе получается N = 33+10+11+1+2=57. В некоторых случаях букву «ё» не выделяют в качестве отдельного самостоятельного символа, и в таком случае полная мощность русского алфавита становится равна 56.

Определение информационного объёма в тексте

Почти всегда при наборе текста на компьютерах и других электронных устройствах приходится сталкиваться с написанием различных символов. К ним следует отнести:

  • заглавные и жирные буквы;
  • курсив;
  • скобки;
  • знаки препинания;
  • вычислительные операции и прочее.

По всем расчётам получается, что мощность компьютерного алфавита составляет 256 различных символов и вариантов. В соответствии с формулой Хартли, N = 256, а i — масса любого из значков в клавиатурном алфавите соответствует одному байту, или восьми битам.

Размер любой напечатанной фразы может быть вычислен по формуле V=K ⋅ log2N. В этом случае N обозначает количество всех символов в алфавите, а K — это численность знаков непосредственно в напечатанной фразе. Так, например, имеется произвольный текст объёмом в 25 листов. На каждом из них расположено по 45 строчек текста, содержащих по 58 символов.

Читайте также:  Теория расчет трансформаторов малой мощности

Исходя из этого, на любой отдельной странице будет 45*58 = 2610 байт информации. В целом же по всему тексту этот объём будет равен 2610*25 = 65250 байт. Для обозначения мощности алфавита в информатике общепринятым вариантом является буква N из формулы Хартли. Именно ее чаще всего указывают в большинстве учебников и профессиональной литературе.

В кодовой таблице ASCII используют восьмибитную кодировку текстовых сообщений. Она позволяет полностью вместить основной набор символов кириллического и латинского алфавитов как в строчном, так и в прописном вариантах. Также с её помощью можно отобразить знаки препинания, цифры и прочие базовые знаки. Часто пользователям приходится иметь дело с более крупными объёмами, состоящими из триллионов байтов.

Для удобства их всегда переводят в увеличенные величины — кило-, мега-, гигабайты и прочее. Для их упрощённого обозначения используются специальные сокращения: Кб, Мб, Гб и так далее. 1 Кб равняется 1024 байтам (2 байта в десятой степени), 1 Мб составляет 1024 Кб (2 Кб в десятой степени) и так далее. Исходя из этого, 65250 байт будут составлять 63,72 килобайта.

Поскольку один отдельный символ состоит из 8 битов, то устанавливать их кодировку целиком не представляется возможным. Вместо этого предпочтительнее образовать кодировку трёхбитовых комбинаций. Расчёт этого действия проводится по формуле Хартли, где n-ная степень будет равняться трём. В результате получается N, равная 8.

При определении мощности чаще всего используют алфавитный подход. Он говорит о том, что объём информации, заложенной в тексте, зависит исключительно от мощности самого алфавита и размера сообщения (то есть количества символов, содержащихся в нём). Этот показатель не имеет никакой связи со смысловым наполнением для человека.

Примеры расчёта мощности

От пользователей или обучающихся в задачах часто требуют научиться определять информационный объём какого-либо сообщения, приняв информационный вес символа за один байт. Так, в отрывке из поэмы Н. Н. Некрасова «Крестьянские дети»:

«Однажды, в студеную зимнюю пору,

Я из лесу вышел; был сильный мороз»

будет 67 символов вместе с пробелами, то есть, в соответствии с условиями задания, 67 байт. Их количество умножают на 8 (количество битов в байте), и на выходе получается 536 битов.

Таким образом, зная в теории суть мощности, можно без проблем определять информационный объем различных сообщений.

Источник



Урок 5
Измерение информации (алфавитный подход). Единицы измерения информации

§4. Измерение информации

Основные темы параграфа:

— алфавитный подход к измерению информации;
— алфавит, мощность алфавита;
— информационный вес символа;
— информационный объем текста;
— единицы информации.

Изучаемые вопросы:

— Алфавит, мощность алфавита.
— 1 бит – информационный вес символа двоичного алфавита.
— N=2b – формула для определения информационного веса символа.
— Информационный объём текста
— Единицы измерения информации: байт, килобайт, мегабайт, гигабайт.

Материал для углубленного изучения темы «Измерение информации»

Изучаемые вопросы:

— Содержательный подход к измерению информации
— Неопределенность знаний
— Формула Хартли

Алфавитный подход к измерению информации

А теперь обсудим вопрос о том, как можно измерять информацию. Существует несколько подходов к измерению информации. Здесь мы рассмотрим только один, который называется алфавитным подходом * .

Алфавитный подход позволяет измерять информационный объем текста на некотором языке (естественном или формальном), не связанный с содержанием этого текста.

Вам хорошо известно, что существуют единицы измерения таких величин, как, например, расстояние, масса, время. Для расстояния — это метр, для массы — грамм, для времени — секунда. Измерение происходит путем сопоставления измеряемой величины с единицей измерения.
——————————
* О другом подходе к измерению информации см. в разделе 1.1 материала для углубленного изучения «Дополнение к главе I».

Сколько раз единица измерения укладывается в измеряемой величине, таков и результат измерения. Следовательно, и для измерения информации должна быть введена своя единица измерения.

Алфавит. Мощность алфавита

Под алфавитом некоторого языка мы будем понимать набор букв, знаков препинания, цифр, скобок и других символов, используемых в тексте. В алфавит также следует включить и пробел, т. е. пропуск между словами.

Полное число символов алфавита принято называть мощностью алфавита. Будем обозначать эту величину буквой N. Например, мощность алфавита из русских букв и отмеченных дополнительных символов равна 54: 33 буквы + 10 цифр + 11 знаков препинания, скобки, пробел.

Информационный вес символа

При алфавитном подходе считается, что каждый символ текста имеет определенный информационный вес. Информационный вес символа зависит от мощности алфавита. А каким может быть наименьшее число символов в алфавите? Оно равно двум! Скоро вы узнаете, что такой алфавит используется в компьютере. Он содержит всего 2 символа, которые обозначаются цифрами 0 и 1. Его называют двоичным алфавитом. Изучая устройство и работу компьютера, вы узнаете, как с помощью всего двух символов можно представить любую информацию.

Читайте также:  Как пишется мощность генератора

Информационный вес символа двоичного алфавита принят за единицу информации и называется 1 бит.

С увеличением мощности алфавита увеличивается информационный вес символов этого алфавита. Так один символ из четырехсимвольного алфавита (N = 4) «весит» 2 бита. Объяснение этому можно дать следующее: все символы такого алфавита можно закодировать всеми возможными комбинациями из двух цифр двоичного алфавита. Комбинацию из нескольких (двух, трех и т. д.) знаков двоичного алфавита назовем двоичным кодом.

Используя три двоичные цифры, можно составить 8 различных комбинаций.

Следовательно, если мощность алфавита равна 8, то информационный вес одного символа равен 3 битам.

Четырехзначными двоичными кодами могут быть закодированы все символы 16-символьного алфавита, и т. д.

Найдем зависимость между мощностью алфавита (N) и количеством знаков в коде (b) — разрядностью двоичного кода.

Заметим, что 2 = 2 1 , 4 = 2 2 , 8 = 2 3 , 16 = 2 4 .

В общем виде это записывается следующим образом:

N = 2b.

Разрядность двоичного кода — это и есть информационный вес символа.

Если число N не равно целой степени двойки, то для определения информационного веса символа поступают следующим образом: берется ближайшее к N, большее N значение М, равное двойке в целой степени: N b . Получаемое отсюда значение b принимается за информационный вес символа. Например, если N = 12, то М = 16 = 2 4 . Отсюда информационный вес символа из алфавита мощностью 12 равен 4 битам. Иначе говоря, 12 символов алфавита кодируются 4-разрядными двоичными кодами.

Информационный объем текста. Единицы информации

Информационный объем текста складывается из информационных весов составляющих его символов. Например, следующий текст, записанный с помощью двоичного алфавита:

1101001011000101110010101101000111010010

содержит 40 символов, следовательно, его информационный объем равен 40 битам.

Сегодня для подготовки текстовых документов чаще всего применяются компьютеры. Алфавит, из которого составляется такой «компьютерный текст», содержит 256 символов. В алфавит такого размера можно поместить все практически необходимые символы: строчные и прописные латинские и русские буквы, цифры, знаки арифметических операций, всевозможные скобки, знаки препинания и пр.

Поскольку 256 = 2 8 , то один символ компьютерного алфавита «весит» 8 битов. Величина, равная восьми битам, называется байтом.

1 байт = 8 битов.

Легко подсчитать информационный объем текста, если известно, что информационный вес одного символа равен 1 байту. Надо просто сосчитать число символов в тексте. Полученное значение и будет информационным объемом текста, выраженным в байтах.

Например, небольшая книжка, подготовленная с помощью компьютера, содержит 150 страниц. На каждой странице 40 строк, в каждой строке 60 символов (включая пробелы между словами). Значит, страница содержит 40 х 60 = 2400 байтов информации. Для вычисления информационного объема всей книги нужно полученную величину умножить на число страниц:

2400 байтов * 150 = 360 000 байтов.

Уже на таком примере видно, что байт — «мелкая» единица. А представьте, что нужно, например, измерить информационный объем целой библиотеки. В байтах это окажется громадным числом!

Для измерения больших информационных объемов используются более крупные единицы:

1 килобайт = 1 Кб = 2 10 байтов = 1024 байта

1 мегабайт = 1 Мб = 2 10 Кб = 1024 Кб

1 гигабайт = 1 Гб = 2 10 Мб = 1024 Мб

1 терабайт = 1 Тб = 2 10 Гб = 1024 Гб

Следовательно, информационный объем вышеупомянутой книги равен приблизительно 360 килобайтам. А если посчитать точнее, то получится:

360 000 : 1024 = 351,5625 Кб.

351,5625 : 1024 = 0,34332275 Мб.

В заключение еще раз обратим внимание на важное свойство рассмотренного здесь алфавитного подхода. При его использовании содержательная сторона текста в учет не берется. Текст, состоящий из бессмысленного сочетания символов, будет иметь ненулевой информационный объем.

Коротко о главном

Алфавитный подход — это способ измерения информационного объема текста, не связанного с его содержанием.

Алфавит — это вся совокупность символов, используемых в некотором языке для представления информации. Мощность алфавита — это число символов в нем.

1 бит — информационный вес одного символа двухсимвольного алфавита (N = 2).

Информационный вес символа (разрядность двоичного кода) (b) и мощность алфавита (N) связаны формулой: N = 2 b .

Если N не равно двойке в целой степени, то находится большее N, ближайшее к N целое число М = 2 b (b — целое), и из этого равенства определяется b — информационный вес символа.

Информационный объем текста равен сумме информационных весов всех символов, составляющих текст.

1 байт — информационный вес символа из алфавита мощностью 2 8 = 256 символов. 1 байт = 8 битов.

Байт, килобайт, мегабайт, гигабайт, терабайт — единицы измерения информации. Каждая следующая единица больше предыдущей в 1024 (2 10 ) раза.

Вопросы и задания

1. Что такое алфавит?

2. Что такое мощность алфавита?

3. Как определяется информационный объем текста при использовании алфавитного подхода?

4. Текст составлен с использованием алфавита мощностью 64 символа и содержит 100 символов. Каков информационный объем текста?

5. Что такое байт, килобайт, мегабайт, гигабайт, терабайт?

6. Информационный объем текста, подготовленного с помощью компьютера, равен 3,5 Кб. Сколько символов содержит этот текст?

7. Два текста содержат одинаковое количество символов. Первый текст составлен в алфавите мощностью 32 символа, второй — мощностью 64 символа. Во сколько раз различаются информационные объемы этих текстов?

Электронное приложение к уроку

liniya

Вернуться к материалам урока
Презентации, плакаты, текстовые файлы Ресурсы ЕК ЦОР
Видео к уроку

liniya

Cкачать материалы урока

Источник