Меню

Импульсный регулятор напряжения двигателя постоянного тока

Управление двигателями постоянного тока. Часть 1

Владимир Рентюк, Запорожье, Украина

В статье дается краткий обзор и анализ популярных схем, предназначенных для управления коллекторными двигателями постоянного тока, а также предлагаются оригинальные и малоизвестные схемотехнические решения

Электродвигатели являются, наверное, одним из самых массовых изделий электротехники. Как говорит нам всезнающая Википедия, электрический двигатель – электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую. Началом его истории можно считать открытие, которое сделал Майкл Фарадей в далеком 1821 году, установив возможность вращения проводника в магнитном поле. Но первый более-менее практический электродвигатель с вращающимся ротором ждал своего изобретения до 1834 года. Его во время работы в Кёнигсберге изобрел Мориц Герман фон Якоби, более известный у нас как Борис Семенович. Электродвигатели характеризуют два основных параметра – это скорость вращения вала (ротора) и момент вращения, развиваемый на валу. В общем плане оба этих параметра зависят от напряжения, подаваемого на двигатель и тока в его обмотках. В настоящее время имеется достаточно много разновидностей электродвигателей, и поскольку, как заметил наш известный литературный персонаж Козьма Прутков, нельзя объять необъятное, остановимся на рассмотрении особенностей управления двигателями постоянного тока (далее электродвигателями).

К двигателям постоянного тока относятся два типа – это привычные для нас коллекторные двигатели и бесколлекторные (шаговые) двигатели. В первых переменное магнитное поле, обеспечивающее вращение вала двигателя, образуется обмотками ротора, которые запитываются через щеточный коммутатор – коллектор. Оно и взаимодействует с постоянным магнитным полем статора, вращая ротор. Для работы таких двигателей внешние коммутаторы не требуются, их роль выполняет коллектор. Статор может быть изготовлен как из системы постоянных магнитов, так и из электромагнитов. Во втором типе электродвигателей обмотки образуют неподвижную часть двигателя (статор), а ротор сделан из постоянных магнитов. Здесь переменное магнитное поле образуется путем коммутации обмоток статора, которая выполняется внешней управляющей схемой. Шаговые двигатели («stepper motor» в английском написании) значительно дороже коллекторных. Это достаточно сложные устройства со своими специфическими особенностями. Их полное описание требует отдельной публикации и выходит за рамки данной статьи. Для получения более полной информации по двигателям этого типа и их схемам управления можно обратиться, например, к [1].

Коллекторные двигатели (Рисунок 1) более дешевы и, как правило, не требуют сложных систем управления. Для их функционирования достаточно подачи напряжения питания (выпрямленного, постоянного!). Проблемы начинают возникать, когда появляется необходимость в регулировке скорости вращения вала такого двигателя или в специальном режиме управления моментом вращения. Основных недостатков таких двигателей три – это малый момент на низких скоростях вращения (поэтому часто требуется редуктор, а это отражается на стоимости конструкции в целом), генерация высокого уровня электромагнитных и радиопомех (из-за скользящего контакта в коллекторе) и низкая надежность (точнее малый ресурс; причина в том же коллекторе). При использовании коллекторных двигателей необходимо учитывать, что ток потребления и скорость вращения их ротора зависят от нагрузки на валу. Коллекторные двигатели более универсальны и имеют более широкое распространение, особенно в недорогих устройствах, где определяющим фактором является цена.

Поскольку скорость вращения ротора коллекторного двигателя зависит, в первую очередь, от подаваемого на двигатель напряжения, то естественным является использование для его управления схем, имеющих возможность установки или регулировки выходного напряжения. Такими решениями, которые можно найти в Интернете, являются схемы на основе регулируемых стабилизаторов напряжения и, поскольку век дискретных стабилизаторов давно прошел, для этого целесообразно использовать недорогие интегральные компенсационные стабилизаторы, например, LM317 [2]. Возможные варианты такой схемы представлены на Рисунке 2.

Схема примитивная, но кажется очень удачной и, главное, недорогой. Посмотрим на нее с точки зрения инженера. Во-первых, можно ли ограничить момент вращения или ток двигателя? Это решается установкой дополнительного резистора. На Рисунке 2 он обозначен как RLIM. Его расчет имеется в спецификации, но он ухудшает характеристику схемы как стабилизатора напряжения (об этом будет ниже). Во-вторых, какой из вариантов управления скоростью лучше? Вариант на Рисунке 2а дает удобную линейную характеристику регулирования, поэтому он и более популярен. Вариант на Рисунке 2б имеет нелинейную характеристику. Но в первом случае при нарушении контакта в переменном резисторе мы получаем максимальную скорость, а во втором – минимальную. Что выбрать – зависит от конкретного применения. Теперь рассмотрим один пример для двигателя с типовыми параметрами: рабочее напряжение 12 В; максимальный рабочий ток 1 А. ИМС LM317, в зависимости от суффиксов, имеет максимальный выходной ток от 0.5 А до 1.5 А (см. спецификацию [2]; имеются аналогичные ИМС и с бóльшим током) и развитую защиту (от перегрузки и перегрева). С этой точки зрения для нашей задачи она подходит идеально. Проблемы скрываются, как всегда, в мелочах. Если двигатель будет выведен на максимальную мощность, что для нашего применения весьма реально, то на ИМС, даже при минимально допустимой разнице между входным напряжением VIN и выходным VOUT, равной 3 В, будет рассеиваться мощность не менее

Таким образом, нужен радиатор. Опять вопрос – на какую рассеиваемую мощность? На 3 Вт? А вот и нет. Если не полениться и рассчитать график нагрузки ИМС в зависимости от выходного напряжения (это легко выполнить в Excel), то мы получаем, что при наших условиях максимальная мощность на ИМС будет рассеиваться не при максимальном выходном напряжении регулятора, а при выходном напряжении равном 7.5 В (см. Рисунок 3), и она составит почти 5.0 Вт!

Рисунок 3. График зависимости мощности, рассеиваемой на ИМС регулятора, от выходного напряжения.

Как видим, получается что-то уже не дешевое, но очень громоздкое. Так что такой подход годится только для маломощных двигателей с рабочим током не более 0.25 А. В этом случае мощность на регулирующей ИМС будет на уровне 1.2 Вт, что уже будет приемлемо.

Выход из положения – использовать для управления метод широтно-импульсной модуляции (ШИМ). Он, действительно, самый распространенный. Его суть – подача на двигатель промодулированных по длительности однополярных прямоугольных импульсов. Согласно теории сигналов, в структуре такой последовательности имеется постоянная составляющая, пропорциональная отношению τ/T, где: τ – длительность импульса, а T – период последовательности. Вот она-то и управляет скоростью двигателя, который выделяет ее как интегратор в этой системе. Поскольку выходной каскад регулятора на основе ШИМ работает в ключевом режиме он, как правило, не нуждается в больших радиаторах для отвода тепла, даже при относительно больших мощностях двигателя, и КПД такого регулятора несравненно выше предыдущего. В ряде случаев можно использовать понижающие или повышающие DC/DC-преобразователи, но они имеют ряд ограничений, например, по глубине регулировки выходного напряжения и минимальной нагрузке. Поэтому, как правило, чаще встречаются иные решения. «Классическое» схемное решение такого регулятора представлено на Рисунке 4 [3]. Оно использовано в качестве дросселя (регулятора) в профессиональной модели железной дороги.

Рисунок 4. «Классическая» схема управления коллекторным двигателем на основе ШИМ (согласно оригиналу [3]).

На первом операционном усилителе собран генератор, на втором компаратор. На вход компаратора подается сигнал с конденсатора C1, а путем регулирования порога срабатывания формируется уже сигнал прямоугольной формы с нужным отношением τ/T (Рисунок 5).

Управление двигателями постоянного тока
Рисунок 5. Диаграмма управления коллекторным двигателем на основе ШИМ. Верхняя трасса – напряжение на конденсаторе С1; средняя (пересекает верхнюю) – сигнал управления (напряжение на движке резистора RV2); нижняя – напряжение на двигателе.

Диапазон регулировки устанавливается подстроечными резисторами RV1 (быстрее) и RV3 (медленнее), а сама регулировка скорости осуществляется резистором RV2 (скорость). Обращаю внимание читателей, что в Интернете на русскоязычных форумах гуляет похожая схема с ошибками в номиналах делителя, задающего порог компаратора. Управление непосредственно двигателем осуществляется через ключ на мощном полевом транзисторе типа BUZ11 [4]. Особенности этого транзистора типа MOSFET – большой рабочий ток (30 А постоянного, и до 120 А импульсного), сверхмалое сопротивление открытого канала (40 мОм) и, следовательно, минимальная мощность потерь в открытом состоянии.

Читайте также:  Электромагнитный преобразователь напряжения переменного тока

На что нужно в первую очередь обращать внимание при использовании таких схем? Во-первых, это исполнение цепи управления. Здесь в схеме (Рисунок 4) есть небольшая недоработка. Если со временем возникнут проблемы с подвижным контактом переменного резистора, мы получим полный почти мгновенный разгон двигателя. Это может вывести из строя наше устройство. Какое противоядие? Установить добавочный достаточно высокоомный резистор, например, 300 кОм с вывода 5 ИМС на общий провод. В этом случае при отказе регулятора двигатель будет остановлен.

Еще одна проблема таких регуляторов – это выходной каскад или драйвер двигателя. В подобных схемах он может быть выполнен как на полевых транзисторах, так и на биполярных; последние несравненно дешевле. Но и в первом и во втором варианте необходимо учитывать некоторые важные моменты. Для управления полевым транзистором типа MOSFET нужно обеспечить заряд и разряд его входной емкости, а она может составлять тысячи пикофарад. Если не использовать последовательный с затвором резистор (R6 на Рисунке 4) или его номинал будет слишком мал, то на относительно высоких частотах управления операционный усилитель может выйти из строя. Если же использовать R6 большого номинала, то транзистор будет дольше находиться в активной зоне своей передаточной характеристики и, следовательно, имеем рост потерь и нагрев ключа.

Еще одно замечание к схеме на Рисунке 4. Использование дополнительного диода D2 лишено смысла, так как в структуре транзистора BUZ11 уже имеется свой внутренний защитный быстродействующий диод с лучшими характеристиками, чем предлагаемый. Диод D1 также явно лишний, транзистор BUZ11 допускает подачу напряжения затвор-исток ± 20 В, да и переполюсовка в цепи управления при однополярном питании, как и напряжение выше 12 В, невозможны.

Если использовать биполярный транзистор, то возникает проблема формирования достаточного по величине базового тока. Как известно, для насыщения ключа на биполярном транзисторе ток его базы должен быть, по крайней мере, не менее 0.06 от тока нагрузки. Понятно, что операционный усилитель такой ток может не обеспечить. С этой целью в аналогичном, по сути, регуляторе, который используется, например, в популярном мини-гравере PT-5201 компании Pro’sKit, применен транзистор TIP125, представляющий собой схему Дарлингтона. Тут интересный момент. Эти мини-граверы иногда выходят из строя, но не из-за перегрева транзистора, как можно было бы предположить, а из-за перегрева ИМС LM358 (максимальная рабочая температура +70 °С) выходным транзистором (максимально допустимая температура +150 °С). В изделиях, которыми пользовался автор статьи, он был вплотную прижат к корпусу ИМС и посажен на клей, что недопустимо нагревало ИМС и почти блокировало теплоотвод. Если вам попалась такое исполнение, то лучше «отклеить» транзистор от ИМС и максимально отогнуть. За это know-how автор статьи был премирован компанией Pro’sKit набором инструментов. Как видите все нужно решать в комплексе – смотреть не только на схемотехнику, но и внимательно относится к конструкции регулятора в целом.

Есть еще несколько интересных схем более простых ШИМ-регуляторов. Например, две схемы на одиночном операционном усилителе с драйвером опубликованы в [5] (Одна из них приведена на Рисунке 6а). Есть схемы и на базе популярного таймера серии 555 [6] (Рисунок 6б). Эти дешевые решения не должны вводить вас в заблуждение своей кажущейся простотой. Вспомним А.С. Пушкина: «Не гонялся бы ты, поп, за дешевизной». Или французов: «За каждое удовольствие нужно платить». Обе эти схемы формируют суррогатный сигнал ШИМ с изменением опорной частоты. Так схемы на ОУ из [5] меняют частоту управления во время регулирования от 170 Гц до 500 Гц, а схема на таймере – от 150 Гц до 1000 Гц, и ее диапазон регулировки (верхний диапазон) ограничен скважностью 9.5. Для некоторых применений это может быть недопустимо, так как на больших частотах двигатель может и не заработать, или не дать нужный момент вращения. Это происходит из-за того, что ток в обмотке двигателя, которая представляет собой индуктивность, устанавливается не мгновенно, а нарастает и спадает по экспоненте. Более корректные схемы на базе таймера и одиночного ОУ приведены на Рисунке 7.

Аналогичные по структуре регуляторы можно построить и на цифровых логических элементах, но они имеют малую нагрузочную способность и требуют отдельного источника питания, поэтому в данной статье не рассматриваются. Применение же таймера 555 интересно тем, что частота генератора, выполненного на его базе, практически не зависит от напряжения питания. Кроме того, большинство ныне выпускаемых зарубежных аналогов, выполненных по биполярной технологии, допускает выходной ток до 200 мА и более. То есть, они могут легко справиться и с емкостью затвора MOSFET и с мощными ключами на биполярных транзисторах. Близкий к таймеру 555 советско-российский аналог – это ИМС (КР)1006ВИ1. Максимальный выходной ток для КР1006ВИ1 и КМОП-версий таймера составляет 100 мА.

Источник

Импульсные регуляторы понижающего типа

date image2014-02-24
views image3440

facebook icon vkontakte icon twitter icon odnoklasniki icon

Импульсные регуляторы напряжения

Преобразователи постоянного напряжения

К преобразователям постоянного напряжения относятся импульсные регуляторы напряжения и широтно-импульсные преобразователи.

Импульсные регуляторы напряжения применяются для регулирования постоянного напряжения. По сравнению с другими методами регулирования они обеспечивают лучшие энергетические характеристики, имеют меньшую массу и габариты.

Принцип импульсного регулирования заключается в том, что источник постоянного тока периодически подключается к нагрузке с некоторой частотой. Длительность интервала подключения tu за один период T определяет величину напряжения на нагрузке. Нагрузке (если она активная) придаётся индуктивный характер с помощью дросселя L. Параметры цепи выбирают таким образом, чтобы постоянная времени цепи нагрузки значительно превышала период коммутации тока. При этом в цепи нагрузки обеспечивается непрерывное протекание тока с допустимой пульсацией.

Схема импульсного регулятора понижающего типа приведена на рис. 3.1 (a), временные диаграммы работы этой схемы – на рис. 3.1 (б).

При включённом транзисторе VT ток дросселя нарастает практически по линейному закону от Imin до Imax. Напряжение на дросселе при этом равно:

при условии, что .

При выключенном транзисторе ток дросселя уменьшается от Imax до Imin, при этом напряжение на дросселе обеспечивает значение напряжения на нагрузке:

Из равенства нулю среднего значения напряжения на дросселе следует:

Следовательно, изменяя коэффициент заполнения управляющих импульсов, можно регулировать напряжение на нагрузке в пределах 0…EП.

С учётом падений напряжения на транзисторе и диоде реальное максимальное напряжение составляет (0.9 … 0.95)EП.

Если нагрузка имеет индуктивный характер (например, двигатель постоянного тока), то требуемое значение пульсаций тока достигается за счёт выбора частоты коммутации транзистора VT. Абсолютная величина равна:

и максимальное значение достигается при КЗ = 0.5. С учётом этого требуемое значение частоты коммутации для обеспечения требуемого коэффициента пульсации тока равно:

При активном характере сопротивления нагрузки в цепь включается дроссель с индуктивностью L, который определяет пульсации тока в нагрузке. Для уменьшения индуктивности дросселя параллельно нагрузке включается конденсатор. Для обеспечения непрерывного характера тока дросселя величина должна удовлетворять условию:

При наличии конденсатора переменная составляющая тока дросселя (треугольная по форме) замыкается через конденсатор. Падение напряжения на конденсаторе, обусловленное током первой гармоники, определяет пульсации напряжения на нагрузке:

Для треугольной формы тока амплитуда первой гармоники максимальна при КЗ = 0.5 и составляет (согласно разложению в ряд Фурье):

При использовании в качестве коммутирующего элемента мощных полевых транзисторов MOSFET и IGBT частота коммутации может составлять десятки – сотни килогерц.

При использовании тиристоров частота коммутации не превышает нескольких килогерц. Схема импульсного регулятора на незапираемом тиристоре с принудительной коммутацией приведена на рис. 3.2.

Для запирания основного тиристора VS1 используются вспомогательный тиристор VS2 и коммутирующий конденсатор С. Предварительно конденсатор С заряжается по цепи VS2 – R – Lн до напряжения питания. После включения VS1 конденсатор перезаряжается по цепи VS1 – VD1 – Lк – С, причём переходной процесс носит колебательный характер. Наличие диода VD1 приводит к тому, что в цепи протекает только первый положительный полупериод тока конденсатора, после чего напряжение на конденсаторе не изменяется. Для выключения тиристора VS1 включается тиристор VS2 и конденсатор С разряжаясь по цепи VS2, VS1 выключает, приложенным в обратном направлении напряжением, тиристор VS1. При этом напряжение на нагрузке скачком увеличится до значения E+Uc. Ток нагрузки на интервале коммутации остаётся неизменным, поэтому напряжение на конденсаторе изменяется по линейному закону. Когда конденсатор С разрядится до нуля, на аноде тиристора VS1 вновь нарастает прямое напряжение со скоростью . Для надёжного запирания тиристора VS1 время разряда конденсатора должно быть больше времени выключения тиристора.

Читайте также:  Что называется напряжением смещения нейтрали

Далее напряжение на нагрузке продолжает линейно снижаться до полного перезаряда конденсатора С через тиристор VS2. Когда ток тиристора VS2 уменьшится до нуля, он выключится. Ток нагрузки замыкается по цепи диода VD.

Наличие “всплесков” напряжения на нагрузке требует выбирать полупроводниковые приборы на двойное напряжение питания. Кроме того, диапазон регулирования напряжения уменьшается, так как при малых коэффициентах заполнения эти “всплески” не позволяют снизить напряжение меньше определённого уровня.

В схеме импульсного регулятора с мягкой коммутацией основной тиристор VS1 шунтируется в обратном направлении диодом VD2 (рис. 3.3).

Процесс перезаряда конденсатора С происходит так же, как и в предыдущей схеме. После включения тиристора VS2 в цепи C – Lк – VS2 – VS1 – C возникает колебательный переходной процесс перезаряда конденсатора. Когда мгновенное значение разрядного тока конденсатора равно мгновенному току нагрузки, тиристор VS1 обесточивается и далее разность токов конденсатора и нагрузки замыкается по диоду VD2. К основному тиристору VS1 приложено обратное напряжение, равное прямому падению напряжения на диоде VD2. Ток через VD2 должен протекать в течение времени, достаточного для выключения основного тиристора VS1. Когда ток конденсатора станет меньше тока нагрузки происходит дополнительный заряд конденсатора током нагрузки, и напряжение на нагрузке уменьшается по линейному закону, на этом интервале разностный ток нагрузки и конденсатора замыкается через диод VD. Мгновенное значение напряжения на нагрузке не превышает величину Е.

Включение параллельно основному тиристору обратного диода позволяет отдавать мощность нагрузки в источник электропитания. Такой режим возможен при переходе двигателя постоянного тока в генераторный режим (режим динамического торможения). Вместе с тем, за счёт низкого обратного напряжения, приложенного к основному тиристору, увеличивается время выключения тиристора.

Схема импульсного регулятора, позволяющего регулировать напряжение на нагрузке от EП и выше, приведена на рис. 3.4.

Повышение напряжения на нагрузке осуществляется за счёт энергии дросселя, включённого последовательно в цепь нагрузки. При включенном транзисторе VT дроссель подключается к источнику постоянного напряжения, ток дросселя линейно нарастает от Imin до Imax. Напряжение на дросселе практически равно EП.

Закрытый диод разделает схему на два участка. Ранее заряженный конденсатор С разряжается на нагрузку, обеспечивая непрерывность тока нагрузки.

При закрытом транзисторе ток дросселя замыкается через открывшийся диод уменьшается от Imax до Imin. Напряжение на дросселе меняет полярность и по отношению к нагрузке включено последовательно согласно с источником питания:

Из равенства нулю среднего значения напряжения на дросселе следует:

Регулировочная характеристика (рис. 3.5) повышающего импульсного регулятора нелинейная, причём её вид зависит от соотношения сопротивлений элементов схемы (транзистора, диода, дросселя) и сопротивления нагрузки. При увеличении этого соотношения максимум напряжения уменьшается и устойчивая работа регулятора возможна до определённой величины коэффициента заполнения управляющих импульсов.

Среднее значение тока диода равно току нагрузки:

Среднее значение тока дросселя, а, следовательно, и источника постоянного напряжения равно:

Среднее значение тока транзистора равна:

Все полупроводниковые приборы должны быть выбраны на напряжение не меньше, чем максимальное значение напряжения на нагрузке.

Импульсные регуляторы для двигателей постоянного тока кроме регулирования величины напряжения, подаваемого на двигатель, должны выполнять ещё функции реверсирования (изменения полярности выходного напряжения) и динамического торможения (возврат энергии в источник постоянного напряжения при переходе двигателя в генераторный режим). Эти функции выполняются с помощью преобразователей постоянного напряжения с широтно-импульсным управлением.

Преобразователь представляет собой мостовую схему на полностью управляемых ключах, которые зашунтированы обратными диодами (рис. 3.6).

Обратные диоды используются для возврата энергии в источник, поэтому если источник постоянного напряжения не обладает двусторонней проводимостью (например, выпрямитель), то выход источника необходимо зашунтировать конденсатором С соответствующей ёмкости.

Основные параметры преобразователя определяются алгоритмом управления ключами. Различают три способа управления ключами:

При симметричном управлении ключи коммутируются попарно в противофазе. При включении ключей К1 и К4 напряжение на двигателе равно EП и имеет положительную полярность; при включении К2 и К3 напряжение на двигателе меняет полярность, оставаясь таким же по величине. Среднее значение напряжения на нагрузке определяется с учётом напряжений обеих полярностей (рис. 3.7 (а)).

Величина напряжения определяется коэффициентом заполнения управляющих импульсов: для одной пары ключей (К1 и К4) равен KЗ, а для другой (К2 и К3) – 1-KЗ:

В интервале изменения KЗ от 0 до 0.5 напряжение на нагрузке изменяется от —EП до 0, а в интервале от 0.5 до 1 – от 0 до EП.

Форма тока нагрузки имеет такой же характер, как и в импульсных регуляторах: при включённых ключах К1 и К4 ток нагрузки линейно нарастает от Imin до Imax, когда К1 и К4 закрыты, то ток нагрузки, определяемый индуктивностью нагрузки, через диоды VD2 и VD3 возвращает в источник энергию, запасённую в индуктивности, и уменьшается от Imax до Imin.

При работе нагрузки (двигатель постоянного тока) в генераторном режиме, когда э.д.с. якоря EЯ больше ЕП, ток нагрузки меняет своё направление и при включённых ключах К1 и К4 ток нагрузки через диоды VD1 и VD4 возвращает энергию в источник, при этом ток уменьшается от —Imax до —Imin, а при включенных ключах К2 и К3 ток нагрузки увеличивается от —Imin до —Imax, запасая энергию в индуктивности нагрузки. При изменении коэффициента заполнения управляющих импульсов изменяется величина энергии, возвращаемой в источник.

Симметричный способ управления характеризуется повышенными пульсациями тока нагрузки вследствие изменения напряжения на нагрузке от —EП до +EП, и непропорциональной зависимостью напряжения на нагрузке от коэффициента заполнения.

При несимметричном методе управления для положительной полярности напряжения на нагрузке ключи К1 и К2 управляются в противофазе, ключ К4 постоянно открыт, а К3 – постоянно закрыт. Для отрицательной полярности напряжения – наоборот: К3 и К4 управляются в противофазе, К2 – открыт, К1 – закрыт. Далее рассматривается работа преобразователя при положительной полярности напряжения на нагрузке (рис 3.7 (б)).

При открытом ключе К1 ток нагрузки увеличивается от Imin до Imax, напряжение на нагрузке равно +EП. Когда К1 закрывается, ток нагрузки замыкается через К4 и VD2, уменьшаясь от Imax до Imin, при этом напряжение на нагрузке практически равно нулю. Коэффициент заполнения управляющих импульсов может изменяться от 0 до 1, при этом напряжение на нагрузке меняется от 0 до +EП:

При работе нагрузки в генераторном режиме при открытом К1 ток нагрузки через диоды VD1 и VD4 возвращает энергию в источник, а при открытом К2 ток нагрузки замыкается через К2 и VD4, накапливая энергию в индуктивности нагрузки.

При недостаточно высокой граничной частоте коммутации ключей увеличить частоту пульсаций тока в нагрузке в два раза позволяет поочерёдный способ управления ключами. Если нет необходимости осуществлять режим возврата энергии в источник, то управляющее напряжение подаётся только на ключи одной диагонали: для положительного напряжения на К1 и К4, для отрицательного – на К2 и К3.

Читайте также:  Работа принципиальной схемы стабилизатора напряжения

Форма управляющего напряжения показана на рис. 3.8 (а).

Длительность импульса изменяется в пределах от до , а паузы управляющих напряжений сдвинуты на половину периода . Напряжение на нагрузке равно напряжению питания, когда оба ключа открыты, и равно нулю, когда один из ключей закрыт. Ток нагрузки при этом замыкается через другой открытый ключ и соответствующий обратный диод. Такая ситуация возникает два раза за период управляющего напряжения, поэтому частота пульсаций напряжения и тока в нагрузке в два раза выше. Изменение длительности управляющих импульсов от до соответствует изменению коэффициента заполнения импульсов напряжения на нагрузке от 0 до 1.

Если управлять ключом К2 в противофазе с ключом К1, а ключом К3 в противофазе с ключом К4, то преобразователь может работать в режиме возврата энергии в источник при работе двигателя постоянного тока в генераторном режиме (рис. 3.8 (б)).

Источник



Импульсные регуляторы постоянного напряжения

Полупроводниковые регуляторы постоянного напряжения применяются в случаях, когда напряжение на нагрузке, питаемой от источника постоянного тока с фиксированным уровнем напряжения (аккумулятор, неуправляемый выпрямитель), необходимо стабилизировать на заданном уровне или плавно регулировать в широких пределах.

Рассматриваемые далее преобразователи основаны на использовании импульсных методов преобразования и регулирования постоянного напряжения. Поэтому их называют импульсными преобразователями (ИП).

В своем составе такой преобразователь содержит силовой ключевой элемент (тиристор, транзистор), с помощью которого нагрузка с регулируемой длительностью подключается и отключается от источника постоянного напряжения.

Выходное напряжение таких преобразователей характеризуется последовательностью импульсов прямоугольной формы с длительностью tи и паузой tп, амплитуда которых близка к напряжению источника питания Е.

Регулирование напряжения на нагрузке можно осуществить двумя способами: изменением интервала проводимости ключа при постоянной частоте переключения ключа (широтно-импульсный) или изменением частоты переключения при постоянном интервале проводимости ключа (частотно-импульсный). При этом регулируется относительное время проводимости ключа, что приводит к плавному изменению среднего напряжения на нагрузке.

T tИ tП

Рисунок 5.4- Выходное напряжение на нагрузке при использовании метода ШИР

Широтно–импульсный метод регулирования (ШИР) осуществляется изменением длительности (ширины) выходных импульсов tи (рисунок 5.4) при неизменном периоде их следования (Т = соnst, f = 1/T = const). Среднее значение выходного напряжения преобразователя при широтно-импульсном регулировании связано с напряжением питания соотношением

(5.2)

где g = tи/Т – коэффициент регулирования.

В соответствии с (5.1) диапазон регулирования выходного напряжения ИП с ШИР составляет от нуля (tи = 0, g = 0) до Е (tи = Т, g = 1).

5.3 Автономные инверторы

Автономные инверторы – это устройства, преобразующие постоянный ток в переменный с постоянной или регулируемой частотой и работающие на автономную нагрузку, не содержащую источников активной энергии той же частоты, что и выходная частота инвертора. При этом частота, напряжение и его форма на выходе определяются режимом работы автономного инвертора.

По характеру протекающих в схеме электромагнитных процессов автономные инверторы подразделяются на инверторы тока, инверторы напряжения и резонансные инверторы.

Так же как и выпрямители, инверторы различаются по мощности, напряжению, числу фаз вторичной обмотки трансформатора, способу регулирования выходного напряжения, по схеме инвертирования и другим факторам.

Работа автономного инвертора и его технико-экономические показатели в основном определяются схемой инвертирования, под которой, как правило, понимают схему соединения вентильных элементов и элементов для их коммутации, а также трансформатора и в отдельных случаях входного или выходного фильтра (если последний оказывает непосредственное влияние на процесс инвертирования). От схемы инвертирования зависят форма кривой выходного напряжения, форма кривой потребляемого тока, внешняя (или нагрузочная) характеристика, к. п. д. инвертора, допустимое изменение коэффициента мощности нагрузки (указываемого обычно по основной гармонике напряжения на нагрузке), максимальное (мгновенное) значение тока нагрузки, определяющее для большинства схем порог устойчивой работы инвертора.

Автономный инвертор тока (АИТ) – это инвертор, форма тока на выходе которого определяется только порядком переключения тиристоров (транзисторов) инвертора, а форма напряжения зависит от характера нагрузки. Питание АИТ должно производиться от источника тока. Если АИТ питается от управляемого выпрямителя, то перевод выпрямителя в режим регулируемого источника тока обычно достигается либо путем включения сглаживающего реактора очень большой индуктивности, либо посредством охвата выпрямителя сильной отрицательной обратной связью по току и использования сглаживающего реактора, индуктивность которого достаточна для сглаживания пульсаций выпрямленного тока.

На рисунке 5.5 представлены схема и диаграммы напряжения и тока на нагрузке для однофазного мостового АИТ на запираемых тиристорах, которые формируются путем последовательного переключения пар тиристоров VS1,VS2 и VS3,VS4.

Рисунок 5.5- Схема однофазного инвертора тока и диаграммы напряжения и тока

5.4 Регуляторы переменного напряжения

Построение регулируемых преобразователей переменного напряжения основывается на использовании полупроводникового коммутатора, функцию которого чаще всего выполняют два включенных встречно-параллельно тиристора в цепи с питающим переменным напряжением и нагрузкой. В таких устройствах применяют фазовые, широтно-импульсный на пониженной частоте и другие методы регулирования переменного напряжения.

uн iн uн

Рисунок 5.6 — Схема однофазного регулятора переменного напряжения и диаграммы напряжения и тока на активной нагрузке

Фазовые методы регулирования базируются на управлении действующим значением переменного напряжения на нагрузке путем изменения длительности открытого состояния одного из включенных встречно-параллельно тиристоров (рисунок 5.6) в течение полупериода частоты сети. Диаграммы напряжений и токов, показанные на рисунке 5.6 для однофазных преобразователей переменного напряжения, соответствуют чисто активной нагрузке. Фазовое регулирование преобразователей переменного напряжения аналогично принципу фазового регулирования управляемых выпрямителей. При способе регулирования, соответствующем рисунку 5.6, запирание тиристоров осуществляется после достижения точек π, 2π и т д. за счет изменения полярности переменного напряжения питания по окончании каждого полупериода (естественная коммутация).

5.4 Регулирование скорости электродвигателя постоянного тока полупроводниковыми преобразователями

Способ регулирования угловойскорости напряжением в цепи якоря в серийных электроприводах постоянного тока осуществляется обычно с помощью однофазных и трехфазных тиристорных выпрямителей (рисунок 5.7) и широтно-импульсных регуляторов ( рисунок 5.8).

Уравнения электромеханической и механической характеристики электродвигателя постоянного тока, питаемого от управляемого выпрямителя в системе регулирования без обратных связей:

ω = (Ud cosα-IRЭ)/ ; ω =Ud cosα/ MRЭ/() 2 , (5.3)

где Ud – среднее значение выпрямленного напряжения для данного типа выпрямителя ( для трехфазной мостовой схемы Ud = 2,34 U);

RЭ – эквивалентное сопротивление цепи якоря;

α — угол управления тиристорами выпрямителя, формируемый схемой управления СУ.

Для широтно-импульсного преобразователя уравнения этих характеристик имеют следующий вид:

ω = (εU–IRЯ) / , ω = εU / MRЯ /() 2 , (5.4)

где ε = tи / T – коэффициент регулирования (tи— длительность импульса, T- период).

+

Рисунок 5.7 – Электропривод на основе трехфазного мостового выпрямителя

VSVD

Рисунок 5.8– Электропривод с импульсным регулятором

Типичный вид механических характеристик для этих схем представлен на рисунке 5.9.

Рисунок 5.9 – а) механические характеристики при питании электродвигателя от управляемого выпрямителя; б) от импульсного регулятора.

Характерной особенностью этих характеристик является резкий подъем характеристик в области малых нагрузок, что обусловлено явлением прерывистых токов.

5.4 Регулирование скорости электродвигателей переменного тока полупроводниковыми преобразователями частоты.

Частоту вращения ротора электродвигателя переменного тока можно определить, как

, (3.1)

где f — частотa питающего напряжения;

pп — число пар полюсов;

s — скольжение.

Изменяя один или несколько параметров, входящих в (3.1), можно регулировать частоту вращения электродвигателя и, следовательно, насоса. На рисунке 3.1 представлены возможные системы регулируемого электропривода нагнетателей. Питание двигателя частотно – регулируемого электропривода осуществляется вентильным преобразователем частоты (ПЧ – рисунок 3.1, а.б), в котором постоянная частота питающей сети преобразуется в переменную . Пропорционально частоте изменяется частота вращения электродвигателя, подключенного к выходу преобразователя. В настоящее время для реализации частотного управления машинами переменного тока применяют различные варианты преобразователей частоты, отличающиеся принципом действия, схемными решениями, алгоритмами управления и т.д.

Источник