Меню

Германиевые диоды средней мощности

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Особенности кремниевых и германиевых диодов. Какие диоды лучше?

Кремниевые и германиевые диоды

Выпрямительные диоды представляют собой электронные устройства, которые используются для управления направлением тока в электрической цепи. Двумя широко используемыми материалами для диодов являются германий и кремний.

Особенности кремниевых и германиевых диодов. Какие диоды лучше?

В то время как оба (германиевый диод и кремниевый диод) выполняют аналогичные функции, между ними имеются определенные различия, которые необходимо принимать во внимание, прежде чем разрабатывать ту или иную электронную схему с применением диодов.

Кремниевые диоды

Производство кремниевого диода начинается с очищения кремния. На каждой стороне диода имплантируются примеси (бор на стороне анода, мышьяк или фосфор на стороне катода), а соединение, где встречаются примеси, называется «p-n-переходом».

Кремниевые диоды

Кремниевые диоды имеют прямое смещение напряжения 0.7 В. Как только разность напряжений между анодом и катодом достигает 0.7 В, диод начнет проводить электрический ток через его p-n-переход. Когда разность напряжений падает менее 0.7 В, p-n-соединение прекратит проводить электрический ток, и диод перестанет функционировать как электрический путь.

Поскольку кремний является относительно простым и недорогим для получения и обработки материалом, кремниевые диоды более распространены, чем германиевые диоды.

Германиевые диоды

Германиевые диоды изготавливаются аналогично кремниевым диодам. В германиевых диодах также используется p-n-переход и имплантируются те же примеси, которые имплантируются в кремниевые диоды. Однако германиевые диоды имеют напряжение смещения 0.3 вольта.

Германиевые диоды

Германий – это редкий материал, который обычно встречается с медными, свинцовыми или серебряными отложениями. Из-за своей редкости германий дороже, из-за чего германиевые диоды встречаются реже кремниевых диодов, к тому же в некоторых случаях они могут быть дороже.

Какие диоды лучше использовать: кремниевые или германиевые?

Гермиевые диоды лучше всего использовать в маломощных электрических цепях. Более низкое напряжение прямого смещения приводит к меньшим потерям мощности и делает схему более эффективной по электрическим характеристикам. Гермиевые диоды также подходят для прецизионных цепей, где колебания напряжения должны быть сведены к минимуму. Однако германиевые диоды можно гораздо легче вывести из строя, чем кремниевые диоды.

Кремниевые диоды являются превосходными диодами общего назначения и могут использоваться практически во всех электрических цепях, где требуется диод. Кремниевые диоды более долговечны, чем германиевые диоды, и их намного легче получить. Как уже было написано выше, германиевые диоды подходят для прецизионных цепей, но если не существует особых требований к германиевому диоду, обычно предпочтительнее использовать кремниевые диоды при проектировании схемы.

Источник

Выпрямительные диоды: устройство, конструктивные особенности и основные характеристики

Основное предназначение выпрямительных диодов — преобразование напряжения. Но это не единственная сфера применения данных полупроводниковых элементов. Их устанавливают в цепи коммутации и управления, используют в каскадных генераторах и т.д. Начинающим радиолюбителям будет интересно узнать, как устроены эти полупроводниковые элементы, а также их принцип действия. Начнем с общих характеристик.

Устройство и конструктивные особенности

Основной элемент конструкции – полупроводник. Это пластина кристалла кремния или германия, у которого имеются две области р и n проводимости. Из-за этой особенности конструкции она получила название плоскостной.

При изготовлении полупроводника обработка кристалла производится следующим образом: для получения поверхности р-типа ее обрабатывают расплавленным фосфором, а р-типа – бором, индием или алюминием. В процессе термообработки происходит диффузия этих материалов и кристалла. В результате образуется область с р-n переходом между двумя поверхностями с различной электропроводимостью. Полученный таким образом полупроводник устанавливается в корпус. Это обеспечивает защиту кристалла от посторонних факторов воздействия и способствует теплоотводу.

Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Конструкция (1), внешний вид (2) и графическое отображение выпрямительного диода(3)

Обозначения:

  • А – вывод катода.
  • В – кристалладержатель (приварен к корпусу).
  • С – кристалл n-типа.
  • D – кристалл р-типа.
  • E – провод ведущий к выводу анода.
  • F – изолятор.
  • G – корпус.
  • H – вывод анода.

Как уже упоминалось, в качестве основы р-n перехода используются кристаллы кремния или германия. Первые применяются значительно чаще, это связано с тем, что у германиевых элементов величина обратных токов значительно выше, что существенно ограничивает допустимое обратное напряжение (оно не превышает 400 В). В то время как у кремниевых полупроводников эта характеристика может доходить до 1500 В.

Читайте также:  Формула определения полезной мощности

Помимо этого у германиевых элементов значительно уже диапазон рабочей температуры, он варьируется в пределах от -60°С до 85°С. При превышении верхнего температурного порога резко увеличивается обратный ток, что отрицательно отражается на эффективности устройства. У кремниевых полупроводников верхний порог порядка 125°С-150°С.

Классификация по мощности

Мощность элементов определяется максимально допустимым прямым током. В соответствии этой характеристики принята следующая классификация:

  • Слаботочные выпрямительные диоды, они используются в цепях с током не более 0,3 А. Корпус таких устройств, как правило, выполнен из пластмассы. Их отличительные особенности – малый вес и небольшие габариты. Выпрямительные диоды малой мощностиВыпрямительные диоды малой мощности
  • Устройства, рассчитанные на среднюю мощность, могут работать с током в диапазоне 0,3-10 А. Такие элементы, в большинстве своем, изготавливаются корпусе из металла и снабжены жесткими выводами. На одном один из них, а именно на катоде, имеется резьба, позволяющая надежно зафиксировать диод на радиаторе, используемого для отвода тепла. Выпрямительный диод средней мощностиВыпрямительный диод средней мощности
  • Силовые полупроводниковые элементы, они рассчитаны на прямой ток свыше 10 А. Производятся такие устройства в металлокерамических или металлостеклянных корпусах штыревого (А на рис. 4) или таблеточного типа (В). Выпрямительные диоды высокой мощностиРис. 4. Выпрямительные диоды высокой мощности

Перечень основных характеристик

Ниже приведена таблица, с описанием основных параметров выпрямительных диодов. Эти характеристики можно получить из даташита (технического описания элемента). Как правило, большинство радиолюбителей к этой информации обращаются в тех случаях, когда указанный в схеме элемент недоступен, что требует найти ему подходящий аналог.

Таблица основных характеристик выпрямительных диодов

Таблица основных характеристик выпрямительных диодов

Заметим, что в большинстве случаев, если требуется найти аналог тому или иному диоду, первых пяти параметров из таблицы будет вполне достаточно. При этом желательно учесть диапазон рабочей температуры элемента и частоту.

Принцип работы

Проще всего объяснить принцип действия выпрямительных диодов на примере. Для этого смоделируем схему простого однополупериодного выпрямителя (см. 1 на рис. 6), в котором питание поступает от источника переменного тока с напряжением UIN (график 2) и идет через VD на нагрузку R.

Принцип работы однодиодного выпрямителя

Рис. 6. Принцип работы однодиодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр).

В результате, как видно из графика (3), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Заметим, что импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика. На практике такую схему используют разве что китайские производители, с целью максимального удешевления своей продукции. Собственно, простота конструкции является единственным ее полюсом.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Заметим, что эти недостатки можно несколько уменьшить, для этого достаточно сделать простой фильтр на базе высокоемкостного электролита (1 на рис. 7).

Даже простой фильтр позволяет существенно снизить пульсации

Рис. 7. Даже простой фильтр позволяет существенно снизить пульсации

Принцип работы такого фильтра довольно простой. Электролит заряжается во время положительного полупериода и разряжается, когда наступает черед отрицательного. Емкость при этом должна быть достаточной для поддержания напряжения на нагрузке. В этом случае импульсы несколько сгладятся, примерно так, как продемонстрировано на графике (2).

Читайте также:  Кпд червячного редуктора от мощности

Приведенное решение несколько улучшит ситуацию, но ненамного, если запитать от такого однополупериодного выпрямителя, например, активные колонки компьютера, в них будет слышаться характерный фон. Для устранения проблемы потребуются более радикальное решение, а именно диодный мост. Рассмотрим принцип работы этой схемы.

Устройство и принцип работы диодного моста

Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Схема включения полупроводниковых выпрямительных элементов продемонстрирована ниже.

Принцип работы диодного моста

Принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uin (2 на рис. 8). Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (график 3), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным. Его преимущества очевидны, перечислим их:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (3), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Диодный мост в виде сборки

Диодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «

» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Источник



Вольт амперная характеристика германиевого диода, устройство диодов

Как и любой полупроводниковый диод, германиевый состоит из двух, контактирующих друг с другом, частей с различными легирующими примесями. Место контакта – это особая область, в ней образуется так называемый потенциальный барьер, определяющий все свойства прибора.

Для того, чтобы диод вообще мог работать, приходится принимать особые меры по очистке германия Ge от примесей. Материал должен иметь почти идеальную кристаллическую решетку, в которую вводятся легирующие донорные (с избытком электронов) или акцепторные (с недостатком электронов) примеси. После донорного легирования говорят о n-проводимости, а после акцепторного – о p-проводимости.

Как работает диод

В качестве n-примесей для германия используют сурьму Sb, а в качестве p-примесей – галлий Ga. Атомы сурьмы при этом проявляют валентность, равную пяти, а атомы галлия – трем. Что это означает? При соединении с четырехвалентным германием в n-материале появляются лишние электроны, а в p-материале вакантные места для них, называемые просто дырками. На границе между p и n материалами возникает разность потенциалов, диффузионный ток и потенциальный барьер, имеющий свойства односторонней проводимости. Этот слой называют p-n переходом.

Читайте также:  Потребители мощности второй категории

Нужно отметить, что концентрации легирующих примесей чрезвычайно малы и должны дозироваться с высокой точностью

Вольт-амперная характеристика (ВАХ)

На рисунке изображена зависимость тока через германиевый диод средней мощности от приложенного к нему напряжения и графический символ для принципиальных схем (К – катод, А – анод).

germanievye-diody

В области прямого тока диод отпирается когда преодолен потенциальный барьер и в дальнейшем ток возрастает приблизительно по экспоненте (уравнение Шокли для идеального диода). Чрезмерный прямой ток может вызвать тепловой пробой. Обратный ток характеризуется очень малой величиной, порядка единиц-десятков мкА. Однако при слишком большом обратном напряжении может возникнуть электрический пробой. Оба вида пробоя необратимо разрушают p-n переход и прибор становится непригодным.

Область применения и история

Германиевые диоды применяются для выпрямления переменных напряжений, переменных составляющих пульсирующих напряжений, в различных нелинейных схемах: амплитудные детекторы, частотные и фазовые дискриминаторы, смесители, ограничители напряжения, логарифмирующие цепи обратных связей операционных усилителей (компрессоры, экспандеры аналоговых сигналов, логарифмирующие усилители для измерений в децибелах).

В связи с переходом на цифровые методы обработки сигналов, данные области применения германиевых (да и кремниевых) диодов сокращаются. Что касается кремния, то он начал интенсивно вытеснять германий из полупроводниковой промышленности уже в 1970-х годах, еще в доцифровую эпоху.

Исторически именно германий был первым промышленным материалом для изготовления диодов и транзисторов. Германиевые приборы резко потеснили электронные лампы, поскольку имеют значительно меньшие габариты и не потребляют энергии для нити накала. К недостаткам полупроводникового диода следует отнести тепловой шум носителей заряда, чем не страдали лампы. Однако, в большинстве случаев, этим оказалось возможно пренебречь.

Самые первые приборы содержали кристалл германия и металлическое острие, упирающееся в этот кристалл. (Нетрудно догадаться, что германий должен иметь p-тип проводимости.) В месте контакта возникал полупроводниковый p-n барьер. Сборка заключалась в стеклянный или металлостеклянный корпус. Такой диод имел очень маленькую собственную емкость и хорошо работал в качестве детекторов, в области высоких частот и малых сигналов.

Мощные германиевые диоды, выпрямители

Для изготовления полупроводникового перехода в диодах, – это основа основ работы прибора, – используются несколько основных методов: диффузия (сплавление n и p-легированных материалов) и планарная эпитаксия. Первый метод считается устаревшим и сейчас не применяется. При его использовании не удавалось снизить емкость запертого перехода, и это значительно ограничивало верхнюю рабочую частоту диода. На низкой частоте, например, промышленной 50-60 Гц, диоды вполне успешно работали в мощных выпрямителях.

Позже появился метод ионного легирования тонких кристаллов (планарная эпитаксия) и удалось значительно повысить диапазон частот, так как при новом методе паразитная емкость, о которой только что говорилось, оказалась, соответственно, ниже. Это никак не повлияло на мощность приборов, о чем еще будет сказано дальше.

Устройство диодов

Об устройстве первых диодов уже говорилось. Диффузионные приборы изготавливали вплавлением капли материала n-проводимости в каплю большего размера из материал p-проводимости или наоборот. “Большая капля” часто охлаждалась теплоотводом в мощных приборах. Для защиты диода от повреждений его заключали в герметичный, по возможности теплоотводящий корпус из металла со стеклянным изолятором и вторым электродом.

germanievye-diody

Планарные диоды часто имеют совсем другую, более современную конструкцию. Это тонкий плоский кристалл на охлаждающей подложке, подвергнутый сложной фото- и химической обработке, и облученный ионами из легирующей пушки. “Фото” – это уже устарело, используют не свет, а жесткие УФ-лучи или рентген.

Принцип напоминает традиционную фотографию: засвечивание и легирование производится через шаблоны с последующими травлениями (подобными проявке для фото). Мощные диоды могут получать, соединяя параллельно несколько других. Это делает тепловую нагрузку равномерной по подложке. Фактически это та же технология, по которой производят микросхемы. Поэтому современные мощные диоды выполняют в корпусах из реактопластов с металлическими теплоотводами.

Параметры германиевого диода

Возьмем, для примера, типичный германиевый диод средней мощности. Он имеет следующие характеристики, важные для практики:

  1. Наибольший прямой ток, Iпр. = 10 А
  2. Прямое напряжение, Uпр. = 0.35 В
  3. Максимальная рабочая температура, °C = 70
  4. Наибольшее обратное напряжение, Uоб. = 50 В
  5. Обратный ток, Iобр. =

Источник