Меню

Германиевые диоды малой мощности

Выпрямительные диоды малой, средней и большой и мощности, справочник

Приведены электрические характеристики выпрямительных диодов отечественного производства. Рассмотрены выпрямительные диоды малой, средней и большой мощности. Справочник по отечественным полупроводниковым диодам.

Используемые в таблицах сокращения:

  • Uобр.макс. — максимально-допустимое постоянное обратное напряжение диода;
  • Uобр.и.макс. — максимально-допустимое импульсное обратное напряжение диода;
  • Iпр.макс. — максимальный средний прямой ток за период;
  • Iпр.и.макс. — максимальный импульсный прямой ток за период;
  • Iпрг. — ток перегрузки выпрямительного диода;
  • fмакс. — максимально-допустимая частота переключения диода;
  • fраб. — рабочая частота переключения диода;
  • Uпр при Iпр — постоянное прямое напряжения диода при токе Iпр;
  • Iобр. — постоянный обратный ток диода;
  • Тк.макс. — максимально-допустимая температура корпуса диода;
  • Тп.макс. — максимально-допустимая температура перехода диода.

Диоды малой мощности

Выпрямительные отечественные диоды малой мощности

Рис. 1. Выпрямительные отечественные диоды малой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам малой мощности.

Диоды средней мощности

Выпрямительные отечественные диоды средней мощности

Рис. 2. Выпрямительные отечественные диоды средней мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам средней мощности.

Диоды большой мощности

Выпрямительные отечественные диоды большой мощности

Рис. 3. Выпрямительные отечественные диоды большой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам большой мощности.

Справочник по диодам отечественного производства.

  • PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
  • Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
  • Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!

  • Компьютерное железо, Computer hardware — таблица с сокетами CPU, типами разъемов USB, PCI, IDE, SCSI и другими
  • Возможные отечественные аналоги для замены зарубежных оптронов — справочник
  • PT2256V — электронный регулятор громкости, характеристики, даташит
  • Интегральные УНЧ ESM231N, TBA790, TCA150, TDA1042, UL1490, UL1492 (1-18Вт)

Вообще-то, если верить журналу Радио за 1960 год, у диодов Д2 и Д9 верхние частоты исчисляются не кГц, а МГц, так что проверьте, пожалуйста, и исправьте.

Илья, благодарим за замечание. Сверили данные по справочникам, все верно — диоды Д2, Д9, Д10-Д14, Д101-Д106, Д223 являются высокочастотными, их граничные рабочие частоты исчисляются в МГц.
Табличные данные исправлены!

диоды малой мощности выпрямительные

часто используем такие.

Спасибо: всё подробно и доходчиво. Вот бы и по транзисторам так. Плюс отечественные аналоги отечественных и зарубежных устаревших и устаревающих транзисторов. Плюс замена германия кремнием (насколько помню из собственного опыта (лабораторная работа), напряжение приведения у них различается на плюс один вольт в пользу кремния). Осталось подставить марки используемых транзисторов. Спасибо.

Граничная частота стоит прочерк, что значит?

Евгению: в графе «Граничная частота» стоит прочерк, потому, что ее значение не нормировано.

В указанных характеристиках нет временных параметров. частотных

а почему в справочнике нет диода КД503А. Он же тоже существует.

Читайте также:  Сип 4х16 мощность квт провод

Добавлены параметры диодов КД503А и КД503Б, которые применяются в качестве переключающих элементов в импульсных быстродействующих устройствах, также их часто можно встретить в самодельной связной радиоаппаратуре.

Источник

Вольт амперная характеристика германиевого диода, устройство диодов

Как и любой полупроводниковый диод, германиевый состоит из двух, контактирующих друг с другом, частей с различными легирующими примесями. Место контакта – это особая область, в ней образуется так называемый потенциальный барьер, определяющий все свойства прибора.

Для того, чтобы диод вообще мог работать, приходится принимать особые меры по очистке германия Ge от примесей. Материал должен иметь почти идеальную кристаллическую решетку, в которую вводятся легирующие донорные (с избытком электронов) или акцепторные (с недостатком электронов) примеси. После донорного легирования говорят о n-проводимости, а после акцепторного – о p-проводимости.

Как работает диод

В качестве n-примесей для германия используют сурьму Sb, а в качестве p-примесей – галлий Ga. Атомы сурьмы при этом проявляют валентность, равную пяти, а атомы галлия – трем. Что это означает? При соединении с четырехвалентным германием в n-материале появляются лишние электроны, а в p-материале вакантные места для них, называемые просто дырками. На границе между p и n материалами возникает разность потенциалов, диффузионный ток и потенциальный барьер, имеющий свойства односторонней проводимости. Этот слой называют p-n переходом.

Нужно отметить, что концентрации легирующих примесей чрезвычайно малы и должны дозироваться с высокой точностью

Вольт-амперная характеристика (ВАХ)

На рисунке изображена зависимость тока через германиевый диод средней мощности от приложенного к нему напряжения и графический символ для принципиальных схем (К – катод, А – анод).

germanievye-diody

В области прямого тока диод отпирается когда преодолен потенциальный барьер и в дальнейшем ток возрастает приблизительно по экспоненте (уравнение Шокли для идеального диода). Чрезмерный прямой ток может вызвать тепловой пробой. Обратный ток характеризуется очень малой величиной, порядка единиц-десятков мкА. Однако при слишком большом обратном напряжении может возникнуть электрический пробой. Оба вида пробоя необратимо разрушают p-n переход и прибор становится непригодным.

Область применения и история

Германиевые диоды применяются для выпрямления переменных напряжений, переменных составляющих пульсирующих напряжений, в различных нелинейных схемах: амплитудные детекторы, частотные и фазовые дискриминаторы, смесители, ограничители напряжения, логарифмирующие цепи обратных связей операционных усилителей (компрессоры, экспандеры аналоговых сигналов, логарифмирующие усилители для измерений в децибелах).

В связи с переходом на цифровые методы обработки сигналов, данные области применения германиевых (да и кремниевых) диодов сокращаются. Что касается кремния, то он начал интенсивно вытеснять германий из полупроводниковой промышленности уже в 1970-х годах, еще в доцифровую эпоху.

Исторически именно германий был первым промышленным материалом для изготовления диодов и транзисторов. Германиевые приборы резко потеснили электронные лампы, поскольку имеют значительно меньшие габариты и не потребляют энергии для нити накала. К недостаткам полупроводникового диода следует отнести тепловой шум носителей заряда, чем не страдали лампы. Однако, в большинстве случаев, этим оказалось возможно пренебречь.

Читайте также:  Формула общего коэффициента мощности

Самые первые приборы содержали кристалл германия и металлическое острие, упирающееся в этот кристалл. (Нетрудно догадаться, что германий должен иметь p-тип проводимости.) В месте контакта возникал полупроводниковый p-n барьер. Сборка заключалась в стеклянный или металлостеклянный корпус. Такой диод имел очень маленькую собственную емкость и хорошо работал в качестве детекторов, в области высоких частот и малых сигналов.

Мощные германиевые диоды, выпрямители

Для изготовления полупроводникового перехода в диодах, – это основа основ работы прибора, – используются несколько основных методов: диффузия (сплавление n и p-легированных материалов) и планарная эпитаксия. Первый метод считается устаревшим и сейчас не применяется. При его использовании не удавалось снизить емкость запертого перехода, и это значительно ограничивало верхнюю рабочую частоту диода. На низкой частоте, например, промышленной 50-60 Гц, диоды вполне успешно работали в мощных выпрямителях.

Позже появился метод ионного легирования тонких кристаллов (планарная эпитаксия) и удалось значительно повысить диапазон частот, так как при новом методе паразитная емкость, о которой только что говорилось, оказалась, соответственно, ниже. Это никак не повлияло на мощность приборов, о чем еще будет сказано дальше.

Устройство диодов

Об устройстве первых диодов уже говорилось. Диффузионные приборы изготавливали вплавлением капли материала n-проводимости в каплю большего размера из материал p-проводимости или наоборот. “Большая капля” часто охлаждалась теплоотводом в мощных приборах. Для защиты диода от повреждений его заключали в герметичный, по возможности теплоотводящий корпус из металла со стеклянным изолятором и вторым электродом.

germanievye-diody

Планарные диоды часто имеют совсем другую, более современную конструкцию. Это тонкий плоский кристалл на охлаждающей подложке, подвергнутый сложной фото- и химической обработке, и облученный ионами из легирующей пушки. “Фото” – это уже устарело, используют не свет, а жесткие УФ-лучи или рентген.

Принцип напоминает традиционную фотографию: засвечивание и легирование производится через шаблоны с последующими травлениями (подобными проявке для фото). Мощные диоды могут получать, соединяя параллельно несколько других. Это делает тепловую нагрузку равномерной по подложке. Фактически это та же технология, по которой производят микросхемы. Поэтому современные мощные диоды выполняют в корпусах из реактопластов с металлическими теплоотводами.

Параметры германиевого диода

Возьмем, для примера, типичный германиевый диод средней мощности. Он имеет следующие характеристики, важные для практики:

  1. Наибольший прямой ток, Iпр. = 10 А
  2. Прямое напряжение, Uпр. = 0.35 В
  3. Максимальная рабочая температура, °C = 70
  4. Наибольшее обратное напряжение, Uоб. = 50 В
  5. Обратный ток, Iобр. =

Источник



Digitrode

цифровая электроника вычислительная техника встраиваемые системы

  • Вычислительная техника
    • Микроконтроллеры микропроцессоры
    • ПЛИС
    • Мини-ПК
  • Силовая электроника
  • Датчики
  • Интерфейсы
  • Теория
    • Программирование
    • ТАУ и ЦОС
  • Перспективные технологии
    • 3D печать
    • Робототехника
    • Искусственный интеллект
    • Криптовалюты

Чтение RSS

Особенности кремниевых и германиевых диодов. Какие диоды лучше?

Кремниевые и германиевые диоды

Выпрямительные диоды представляют собой электронные устройства, которые используются для управления направлением тока в электрической цепи. Двумя широко используемыми материалами для диодов являются германий и кремний.

Особенности кремниевых и германиевых диодов. Какие диоды лучше?

В то время как оба (германиевый диод и кремниевый диод) выполняют аналогичные функции, между ними имеются определенные различия, которые необходимо принимать во внимание, прежде чем разрабатывать ту или иную электронную схему с применением диодов.

Кремниевые диоды

Производство кремниевого диода начинается с очищения кремния. На каждой стороне диода имплантируются примеси (бор на стороне анода, мышьяк или фосфор на стороне катода), а соединение, где встречаются примеси, называется «p-n-переходом».

Кремниевые диоды

Кремниевые диоды имеют прямое смещение напряжения 0.7 В. Как только разность напряжений между анодом и катодом достигает 0.7 В, диод начнет проводить электрический ток через его p-n-переход. Когда разность напряжений падает менее 0.7 В, p-n-соединение прекратит проводить электрический ток, и диод перестанет функционировать как электрический путь.

Поскольку кремний является относительно простым и недорогим для получения и обработки материалом, кремниевые диоды более распространены, чем германиевые диоды.

Германиевые диоды

Германиевые диоды изготавливаются аналогично кремниевым диодам. В германиевых диодах также используется p-n-переход и имплантируются те же примеси, которые имплантируются в кремниевые диоды. Однако германиевые диоды имеют напряжение смещения 0.3 вольта.

Германиевые диоды

Германий – это редкий материал, который обычно встречается с медными, свинцовыми или серебряными отложениями. Из-за своей редкости германий дороже, из-за чего германиевые диоды встречаются реже кремниевых диодов, к тому же в некоторых случаях они могут быть дороже.

Какие диоды лучше использовать: кремниевые или германиевые?

Гермиевые диоды лучше всего использовать в маломощных электрических цепях. Более низкое напряжение прямого смещения приводит к меньшим потерям мощности и делает схему более эффективной по электрическим характеристикам. Гермиевые диоды также подходят для прецизионных цепей, где колебания напряжения должны быть сведены к минимуму. Однако германиевые диоды можно гораздо легче вывести из строя, чем кремниевые диоды.

Кремниевые диоды являются превосходными диодами общего назначения и могут использоваться практически во всех электрических цепях, где требуется диод. Кремниевые диоды более долговечны, чем германиевые диоды, и их намного легче получить. Как уже было написано выше, германиевые диоды подходят для прецизионных цепей, но если не существует особых требований к германиевому диоду, обычно предпочтительнее использовать кремниевые диоды при проектировании схемы.

Источник