Меню

Генератор постоянного тока параллельного возбуждения мощностью

Генераторы параллельного возбуждения

Определение. Генераторами параллельного возбуждения называют генераторы, обмотка возбуждения которых питается от ЭДС обмотки якоря и подключена к выводам якоря машины параллельно цепи нагрузки.

Схема генератора параллельного возбуждения. Схема изображена на рис. 1.20. Ток якоря IЯ = I + IВ у щеток разветвляется на ток нагрузкиI и ток возбуждения IВ . Обычно ток возбуждения невелик и составляет (0,01-0,05) IЯ.НОМ . Последовательно с обмоткой возбуждения включается реостат RP для регулирования возбуждения. Реостат позволяет изменять ток возбуждения и, следовательно, напряжение генератора.

Характеристика холостого хода генератора с самовозбуждением всегда снимается при независимом возбуждении (обмотка возбуждения отключается от якоря и запитывается от постороннего источника) и поэтому аналогична характеристике холостого хода генератора с независимым возбуждением.

Самовозбуждение генератора. Так как обмотка возбуждения подключена к выводам якоря, то важное значение имеет процесс первоначального возникновения ЭДС, называемый процессом самовозбуждения.

Рассмотрим процесс самовозбуждения при отключенной нагрузке генератора, т.е. при холостом ходе.

Магнитная цепь машины имеет небольшой остаточный магнитный поток (примерно 2-3% номинального). При вращении якоря в поле остаточного потока в нем наводится небольшая ЭДС, вызывающая некоторый ток в обмотке возбуждения. При соответствующем направлении он увеличивает остаточный магнитный поток, ЭДС в якоре возрастает и процесс развивается лавинообразно до тех пор, пока не будет ограничен насыщением магнитной цепи.

Однако процесс самовозбуждения может развиваться только при определенных условиях, называемых условиями самовозбуждения. Выясним эти условия. Уравнение второго закона Кирхгофа для цепи возбуждения имеет вид: Е + еL= (Rв + Rя)iв, где еL = – d (Liв) /dt – ЭДС самоиндукции цепи возбуждения, возникающая при нарастании тока возбуждения;

L – суммарная индуктивность обмоток возбуждения и якоря; Rв — сумма сопротивлений обмотки возбуждения и регулировочного реостата.

Так как Rя « Rв, то уравнение принимает вид:

Покажем на графике характеристику холостого хода Е = f (Iв) и характеристику цепи возбуждения – прямую Uв = Rв Iв

(рис. 1.21). Отрезок аб, равный Е – Rв Iв = d (Liв) /dt, пропорционален ЭДС самоиндукции цепи возбуждения. Из графика следует, что в точке в пересечения характеристик d (Liв) /dt = 0 рост тока возбуждения прекращается Uв = E и процесс самовозбуждения заканчивается. Положение точки в, называемой рабочейточкой, зависит от сопротивления цепи возбуждения Rв » tgα. Чем оно больше, тем прямая Uв = f (Iв) идет круче и рабочая точка перемещается влево. При некотором сопротивлении цепи возбуждения Rв, кр = tg αкр, называемом критическим, напряжение на выводах генератора близко к остаточной ЭДС Ео и генератор не возбуждается.

Из сказанного вытекают условия, при которых генератор должен возбуждаться:

Ø наличие остаточной намагниченности;

Ø совпадение по направлению остаточного магнитного поля и поля, создаваемого обмоткой возбуждения (несовпадение полей может быть при неправильном подключении выводов обмотки возбуждения или при несоответствующем направлении вращения якоря);

Ø сопротивление цепи возбуждения должно быть меньше критического;

Ø скорость вращения якоря должна быть выше критической скорости.

Внешняя характеристика. Внешняя характеристика генератора параллельного возбуждения U = f (I) при Rв = const и n = nном = const (рис. 1.18, кривые 2 и 2а) отличается от внешней характеристики генератора независимого возбуждения более резким снижением напряжения при увеличении нагрузки. Это объясняется следующим образом: уменьшение напряжения по тем же причинам, что и у генератора независимого возбуждения, приводит к уменьшению тока возбуждения, дополнительному уменьшению ЭДС генератора. При номинальной нагрузке снижение напряжения относительно напряжения холостого хода составляет 10-18%.

Читайте также:  Слабая мощность двигателя причины

Регулировочная характеристика. Регулировочная характеристика генератора Iв = f (I) при U = Uном = const и n = nном = const аналогична регулировочной характеристике генератора независимого возбуждения (рис. 1.19, кривая 2), но идет несколько круче, что объясняется более значительным уменьшением напряжения генератора.

Источник

Двигатель с параллельным возбуждением

date image2015-05-26
views image11459

facebook icon vkontakte icon twitter icon odnoklasniki icon

Электрические машины постоянного тока.

Генератор с параллельным возбуждением.

Ток отдаваемый генератором в сеть:

Эдс. генератора: Е= U+Iя ∙Rя.

Мощность отдаваемая сети: Р2 = U∙I =I 2 ∙R

Мощность приводного двигателя: Р1 = Р2/ η

Мощность потерь в обмотке якоря:

Мощность потерь в обмотке возбуждения:

Рв = U ∙Iв = I 2 в∙ Rв

Суммарные потери: ΣР = Р1 – Р2 .

Коэффициент полезного действия генератора:

η = Р2/Р1 = U∙I / (U∙I+ ΣР)

Двигатель с параллельным возбуждением.

Ток двигателя: I = Iя + Iв

Напряжение двигателя: U = E + Iя ∙Rя.

Мощность потребляемая от сети: Р1 = U∙I

Момент на валу двигателя:

Коэффициент полезного действия двигателя:

Пример 6.1.Генератор постоянного тока с параллельным возбуждением развивает номинальное напряжение Uн =220 В. Генератор нагружен на нагрузку Rн = 2,2 Ом. Сопротивление обмотки якоря Rя = 0,2 Ом, обмотки возбуждения Rв =220 Ом. КПД генератора η = 0,87. Определить следующие величины:

1.ток нагрузки; 2. ток якоря; 3. ток возбуждения; 4. эдс генератора;

5.полезную мощность; 6. потребляемую мощность; 7. суммарные потери в генераторе; 8. потери в обмотке якоря; 9. потери в обмотке возбуждения.

3.Ток якоря: Iя = I – Iв = 100 – 1= 99 А.

Е = U+ Iя ∙Rя = 220 + 99∙0,1 = 229,9 В.

Р2 = Uн∙I = 220∙100 = 22000 Вт = 22 кВт.

7.Суммарные потери в генераторе:

ΣР = Р1– Р2 = 25,87 – 22 = 3,87 кВт.

8.Потери в обмотке якоря:

Ря = Iя 2 ∙Rя = 99 2 ∙0,2 = 1960,2 Вт.

9.Потери в обмотке возбуждения:

Рв = Uн∙Iв = 220∙1 = 220 Вт.

Ответ: I = 100А; Iв = 1 А; Iя = 99 А; Е = 229,9 В; Р2 = 22 кВт;

Р1 = 25,87 кВт; ΣР = 3,87 кВт; Ря = 1960,2 Вт; Рв = 220 Вт.

Пример 6.2.Рис.8.2.Двигатель постоянного токапараллельного возбуждения работает от сети Uн = 220 В. Частота вращения якоря n2 = 1450 об/мин. Ток двигателя I = 500 А, противо–эдс якоря Е = 202 В, сопротивление обмотки возбуждения Rв = 44 Ом. Кпд двигателя

η = 0,88. Определить:1.ток возбуждения; 2.ток якоря; 3. сопротивление обмотки якоря; 4.потребляемую мощность; 5.полезную мощность на валу; 6 Суммарные потери в двигателе; 7.потери в обмотке якоря; 8.потери в обмотке якоря; 9.вращающий момент на валу.

1. Ток возбуждения:

Iя = I – Iв = 500 –5 = 495 А.

3. Сопротивление обмотки якоря:

4. Потребляемая мощность от сети:

Р1 = Uн∙I = 220 ∙500 = 110 000 Вт = 110 кВт.

5. Полезная мощность на валу:

Р2 = P1∙ η = 110 ∙ 0,87 = 95,7 кВт.

6. Суммарные потери в двигателе:

ΣР = Р1 – P2 = 110 – 95,7 = 14,3 кВт.

7. Потери в обмотке возбуждения:

Pв = Uн∙Iв = 220∙5 = 1100 Вт =1,1 кВт.

8. Потери в обмотке якоря:

Ря = Iя 2 ∙ Rя =495 2 ∙0,016 = 3920,4 Вт = 3,92 кВт.

9. Вращающий момент на валу:

Ответ: Iв = 5 А,Iя = 495 А, Rя = 0,016 Ом,Р1 = 110 кВт, Р2 = 95,7 кВт,

ΣР = 14,3 кВт, Pв = 1,1 кВт, Ря =3,92 кВт М = 630,7 Нм.

Источник



Расчет генератора постоянного тока с параллельным возбуждением

Для расчета генератора постоянного тока с параллельным возбуждением необходимо:

усвоить устройство и принцип действия электрических машин постоянного тока; знать формулы, выражающие взаимосвязь между электрическими величинами, характеризующими данный тип электрической машины.

— отчетливо представлять связь между напряжением U на зажимах машины, ЭДС Е и падением напряжения IRв обмотке якоря генератора и двигателя.

Читайте также:  Формула для вычисления потребляемой мощности

Для генератора Е =U+ IЯ· ∑R, для двигателя U = Е + IЯ· ∑R

В этих формулах ∑R= RЯ+RДП +RКО +RС +RЩ — сумма сопротивлений всех участков цепи якоря: RЯ — обмотки якоря;

RДП — обмотки добавочных полюсов; RКО — компенсационной обмотки;

RЩ — переходного щеточного контакта; RСпоследовательной обмотки возбуж­дения.

При отсутствии в машине (это зависит от её типа и предложен­ной задачи) каких-либо из указанных обмоток в формулу, определяю­щую ∑R, не входят соответствующие слагаемые. Полезный вращающий момент М на валу двигателя определяется по формуле

M = Н·м,

гдеР2— полезная механическая мощность,Вт. n — об/мин. – частота вращения вала двигателя.

Пример

Генератор постоянного тока с параллельным возбуждением ра­ботает в номинальном режиме.

Его технические данные:

РНОМ =16000Вт — номинальная мощность; Uном =230 В — номинальное напряжение;

RЯ=0,13 Ом — сопротивление обмотки якоря; RВ=164 Ом — сопротивление обмотки возбуждения;

ηНОМ= 90,1 % номинальный коэффициент полезного действия.

Определить:

Iном — ток нагрузки, I B — ток возбуждения, I Я — ток якоря,

РЯ— потери мощности в якоре, РВ— потери мощности в обмотке возбуждения,

РЩ — потери мощности в щеточном контакте,

РХ = РСТМЕХ — потери холостого хода, состоящие из по­терь в стали и механических потерь. РДОБ— добавочные потери,

∑P— суммарные потери мощности, Е — ЭДС генератора.

Решение

I. Ток нагрузки Iном = Рном/ Uном =16000 Вт / 230 В = 69,6 А

2. Ток возбуждения IB = U H M / R B = 230 В / I64 Ом = 1,4 А.

3. Ток якоря = Iном + Iв =69,6 А + 1,4 А = 71 А

4. Потери мощности в обмотке якоря Ря = I 2 я · Rя =71 2 А 2 ·0,13 Ом = 655 Вт.

5. Потери мощности в обмотке воз­буждения

РВ = I 2 В · RВ =1,4 2 А 2 · 164 Ом = 321 Вт.

6. Потери мощности в щеточном контакте Рщ =UЩ · Iя=2 В • 71 А= 1428 Вт.

Здесь ∆ UЩ = 2 В падение напряжения на электрографитированных щетках.

7. Добавочные потери мощности РДОБ = 0,01·РНОМ = 0,01 • 16000 Вт = 160 Вт.

8.Мощность, потребляемая генератором от первичного двигателя

Р1 = Рном / ηНОМ= 16000 Вт / 0,901 = 17758 Вт

9. Суммарные потери мощности в генераторе ∑Р = Р1 Рном = 17758 Вт –16000 Вт = 1758 Вт

10. Потери холостого хода, состоящие из потерь в стали и механических потерь

Рх = ∑Р– (РЯ+РВ +РЩ+РДОБ)= 1758 Вт – (655+321+142+160) Вт = 480 Вт

11. ЭДС генератора, без учета потерь в щеточном контакте

Е = U+ IЯ · Rя = 230 В + 71 А · 0,13 Ом = 239,23 В

С учетом потерь в щеточном контакте

Е =U+ IЯ · (Rя + Rщ)= U +(Iя · Rя +∆ UЩ) =230 В+(71 0,13 Ом +2 В) = 241,23 В

7. Расчет двигателя посто­янного тока со смешанным возбуждением

Электродвигатель постоянного тока со смешанным возбуждением рассчитан на:

Р2ном = 2000 Вт-номинальная мощность на валу двигателя;

UНОМ = 27 В — номинальное напряжение, подведенное к двигателю;

IНОМ = 100 Аток, потребляемый двигателем из сети;

пНОМ= 8000 об/минчастота вращения якоря вала двигателя;

∑R= RЯ+RДП +RС =0,01443 Ом суммарное сопротивление,

Читайте также:  Мощность тэнов для водонагревателей термекс

гдеR Я сопротивление обмотки якоря;

РДП сопротивление обмотки добавочных полюсов;

RС сопротивление последовательной /сериесной/ обмотки возбуждения;

RШ =6,75 Ом сопротивление параллельной /шунтовой/ обмотки воз­буждения

ПР –пусковой реостат;РР –регулировочный реостат;

ОВШ параллельная (шунтовая) обмотка возбуждения;

ОВС –последовательная (сериесная) обмотка возбуждения; ОДП – обмотка добавочных полюсов.

Определить:

P1— мощность,потребляемую двигателем из сети; η ном номинальный коэффициент полезного действия;

М вращающий (полезный) момент на валу двигателя;

IЯ— ток в обмотке якоря (он же протекает через обмотку добавочных полюсов и последовательную обмотку воз­буждения);

Е противо-ЭДС в обмотке якоря; ∑P суммарные потери мощности в двигателе;

РЭ== РЯ+РДП +РС +РЩ+РШэлектрические потери мощности в обмотке якоря;

Рдп— электрические потери мощности в обмотке дополнитель­ных полюсов;

РС— электрические потери мощности в последовательной обмотке возбуждения;

PШ электрические потери мощности в параллельной обмот­ке возбуждения;

Рщ электрические потери мощности в переходном контакте щеток коллектора, приняв ∆U =2В

РДОБ добавочные потери мощности;

Рх потери холостого хода, состоящие из потерь в стали и механических потерь.

Решение

1. Мощность, потребляемая двигателем из сети Р1 = Uном · IНОМ =27 В ·100 А = 2700 Вт

2. КПД двигателя равен ηНОМ= 100 % = =74%

3. Полезный вращающий момент на валу двигателя М= = =2,38 Н·м

4. Ток параллельной обмотки возбуждения Iш=Uном / RШ = 27 В / 6,75 Ом = 4 А

5. Ток, протекающий через обмотку якоря, обмотку добавочных полюсов, последовательную обмотку возбуждения (все эти обмотки соединены последовательно) Iя =Iном – IШ =100 А – 4 А = 96 А

6. Противо-ЭДС в обмотке якоря Е=Uном – Iя(RЯ+RДП +RС)–∆UЩ =27–96 · 0, 01443 –2 =23,61В

Здесь∆UЩ потери напряжения в переходном контакте щеток на коллекторе.

7. Суммарные потери мощности в двигателе∑P =Р1 – Р2НОМ =2700 ВТ – 2000 Вт = 700 Вт

8. Электрические потери мощности в двигателеРЭ= РЯ+РДП +РС +РЩ+РШ, где РЯ= I 2 я · RЯ – потери мощности в якоре

Рдп= I 2 я · RДП – электрические потери мощности в обмотке дополнитель­ных полюсов;

РС= I 2 я · RС – электрические потери мощности в последовательной обмотке возбуждения;

Рщ = ∆UЩ ·Iя электрические потери мощности в переходном контакте щеток коллектора.

РШ=UНОМ · IШ илиРШ = I 2 Ш · RШ или PШ = U 2 НОМ / RШ электрические потери мощности в параллельной обмот­ке возбуждения;

Тогда получаем: РЭ =I 2 я(RЯ+RДП +RС)+∆UЩ · Iя +Uном · IШ =96 2 · 0,01443 + 2· 96 +27· 4=433Вт

9.Добавочные потери мощности, возникающие в обмотке якоря, вызванные искажением магнитного поля реакцией якоря и полями, возникающими вокруг секций, в которых происходит коммутация РДОБ = 0,01· Р2НОМ = 0,01 · 2000 = 20 Вт

10.Потери холостого хода, состоящие из потерь в стали и механических потерь

Рх =Рст +Рмех, т. к. ∑Р =Рэ +Рх +Р доб, то Рх =∑Р – (Рэ + Р доб) =700 – (433 + 20)=247 Вт.

Схемы двигателя постоянного тока смешанным возбуждением

Источник