Меню

Формула напряжения изгиба оси

Формулы по изгибу

В данном разделе собраны формулы по теме «изгиб». Причем, здесь размещены формулы, относящиеся только к поперечному (простому, прямому) изгибу. По другим, более сложным видам деформации, таким как изгиб с кручением, косой изгиб будет позднее создана отдельная страничка.

Формула для определения нормальных напряжений в точках поперечного сечения:

где Mx — изгибающий момент в поперечном сечении, Ix — момент инерции относительно центральной оси, y — расстояние от центральной оси до точки в которой вычисляется напряжение.

Формула для определения максимального (минимального) нормального напряжения в наиболее опасных точках поперечного сечения:

где Mx — изгибающий момент в поперечном сечении, Wx — момент сопротивления относительно центральной оси.

Формула для определения момента сопротивления поперечного сечения:

где Ix — момент инерции относительно центральной оси, y max — расстояние до наиболее удаленных точек поперечного сечения.

Источник

Техническая механика

Сопротивление материалов

Напряжения при изгибе

Нормальные напряжения при чистом изгибе

Как было установлено ранее, в поперечных сечениях балки при чистом изгибе возникают только нормальные напряжения растяжения и сжатия. Вопрос о распределении этих напряжений по поперечному сечению решается путем рассмотрения деформаций волокон балки.

Рассмотрим участок балки, подверженный деформации чистого изгиба. Двумя поперечными сечениями АВ и СD выделим элемент балки бесконечно малой длины ds (рис 1). Радиус кривизны нейтрального слоя балки обозначим ρ.

Рассмотрим слой волокон mn, находящийся на расстоянии y от нейтрального слоя NN. Это волокно в результате деформации изгиба удлинилось на величину nn 1. Ввиду малости расстояния ds заштрихованные треугольники будем считать прямолинейными; эти треугольники подобны (n 1F || mE):

Из подобия треугольников запишем равенство:

Так как левая часть этого равенства есть относительное удлинение, т. е. nn 1 / ds = ε, то y / ρ = ε.

Применив закон Гука при растяжении и сжатии σ = Еε, получим:

Из этой формулы видно, что нормальные напряжения при изгибе распределены по высоте сечения неравномерно: максимальные напряжения возникают в волокнах, наиболее удаленных от нейтральной оси. По ширине сечения нормальные напряжения не меняются.
Распределение нормальных напряжений изображено на рис. 2.

Полученная формула для определения нормальных напряжений неудобна, так как в нее входит радиус кривизны нейтрального слоя.
Для вывода формулы, связывающей нормальные напряжения с изгибающим моментом, применим метод сечений и рассмотрим равновесие части балки, изображенной на рис. 3.
В плоскости поперечного сечения выделим бесконечно малую площадку dA, в пределах которой будем считать нормальные напряжения σ постоянными; тогда нормальная сила dN, действующая на площадку dA, будет равна:

Читайте также:  Способы освобождения пострадавшего от действия электрического тока напряжением выше 1000

Составим уравнения равновесия:

1. Σ Z = 0; ∫dN = 0, или: ∫σ dA = ∫Еy / ρ dA = Е / ρ ∫y dA = 0 .

(ρ для данного сечения, а также модуль упругости Е – величины постоянные, поэтому вынесены за знак интеграла). Поскольку ρ и Е не равны нулю, значит, ∫y dA = 0. Этот интеграл представляет собой статический момент площади сечения относительно оси x, т. е. нейтральной оси бруса (балки). Равенство нулю статического момента инерции означает, что при изгибе нейтральная ось проходит через центр тяжести площади поперечного сечения;

Так как при чистом изгибе изгибающий момент равен внешнему моменту М и = m, то

М и = ∫y dN = ∫y dA = ∫y Еy / ρ dA = Е / ρ ∫y 2 dA,

где: I = ∫y 2 dA – момент инерции поперечного сечения относительно нейтральной оси; ЕI – жесткость сечения при изгибе.

Так как при чистом изгибе балки постоянного сечения М и = const, то:

ρ = EI / М и = const.

Следовательно, изогнутая ось такой балки представляет собой дугу окружности. Выражение радиуса кривизны подставим в формулу для определения нормальных напряжений; тогда:

σ = Еy / ρ = Ey / EI / М и = М и y / I.

Максимальное значение нормальные напряжения будут иметь у волокон, наиболее удаленных от нейтральной оси:

σ max = М и y max / I = М и / I / y max = М и / W,

где W = I / y max – момент сопротивления изгибу (или осевой момент сопротивления).
Момент сопротивления изгибу есть отношение осевого момента инерции поперечного сечения относительно нейтральной оси к расстоянию от этой оси до наиболее удаленного волокна.
Единица момента сопротивления сечения изгибу [W] = м 3 .

Итак, наибольшие нормальные напряжения при чистом изгибе вычисляются по формуле

Нетрудно заметить, что эта формула по своей структуре аналогична формулам для определения напряжений при растяжении, сжатии, сдвиге и кручении.

Читайте также:  Как поменять реле напряжения ваз 2114

Касательные напряжения при изгибе

Очевидно, что при поперечном изгибе, вызванном приложением к балке поперечной силы, в сечениях балки должны возникнуть касательные напряжения.
Определением зависимости между внешними нагрузками, геометрическими и физическими параметрами балок и касательными напряжениями, возникающими в них, занимался русский мостостроитель Д. И. Журавский, который в 1855 году предложил следующую формулу:

Эта формула называется формулой Журавского и читается так:
касательные напряжения в поперечном сечении балки равны произведению поперечной силы Q на статический момент S относительно центральной оси части сечения, лежащей выше рассматриваемого слоя волокон, деленному на момент инерции I всего сечения относительно нейтральной оси и на ширину b рассматриваемого слоя волокон.

По формуле Журавского можно вывести зависимости для определения касательных напряжений в балках, имеющих разную форму поперечного сечения (прямоугольную, круглую и т. п.).
Например, для балки круглого сечения формула Журавского в результате преобразований выглядит так:

τ max = 4Q / (3A) = 4τ сред / 3,

где Q – поперечная сила, вызывающая изгиб, А – площадь сечения балки.

Большинство балок в конструкциях рассчитывается только по нормальным напряжениям, и только три вида балок проверяют по касательным напряжениям:

— деревянные балки, т. к. древесина плохо работает на скалывание;
— узкие балки (например, двутавровые), поскольку максимальные касательные напряжения обратно пропорциональны ширине нейтрального слоя;
— короткие балки, так как при относительно небольшом изгибающем моменте и нормальных напряжениях у таких балок могут возникать значительные поперечные силы и касательные напряжения.
Максимальное касательное напряжение в двутавровой балке определяется по формуле Журавского, при этом геометрические характеристики таких балок берутся из справочных таблиц .

Расчеты на прочность при изгибе

Условие на прочность при изгибе заключается в том, что максимальное нормальное напряжение в опасном сечении не должно превышать допускаемое.
Полагая, что гипотеза о не надавливании волокон справедлива не только при чистом, но и при поперечном изгибе, мы можем нормальные напряжения при поперечном изгибе определять по такой же формуле, что и при чистом изгибе, при этом расчетная формула выглядит так:

σ max = Ми max / W ≤ [σ]

Читайте также:  Защита линии от скачков напряжения

и читается так: нормальное напряжение в опасном сечении, определенное по формуле σ max = Ми max / W ≤ [σ] не должно превышать допускаемое.
Допускаемое нормальное напряжение при изгибе выбирают таким же, как при растяжении и сжатии.
Максимальный изгибающий момент определяют по эпюре изгибающих моментов или расчетом.
Так как момент сопротивления изгибу W в расчетной формуле стоит в знаменателе, то чем больше W, тем меньшие напряжения возникают в сечении бруса.

Ниже приведены моменты сопротивления изгибу для наиболее часто встречающихся сечений:

1. Прямоугольное сечение размером b x h: W пр = bh 2 / 6.

2. Круглое сечение диаметром d: W круг = π d 3 / 32 ≈ 0,1d 3

3. Кольцо размером D x d: W кольца = ≈ 0,1 (D 4 – d 4 ) / D; (момент сопротивления кольцевого сечения нельзя определять, как разность моментов сопротивления большого и малого кругов).

Источник



ISopromat.ru

σ — нормальные напряжения,
τ — касательные напряжения,
Qy – внутренняя поперечная сила,
Mx – внутренний изгибающий момент,
Ix – осевой момент инерции сечения балки,
Wx – осевой момент сопротивления сечения,
A — площадь поперечного сечения,
[ σ ], [ τ ] – соответствующие допустимые напряжения,
E – модуль упругости I рода (модуль Юнга),
y — расстояние от оси x до рассматриваемой точки сечения балки.

Выражения для расчета поперечных сил и изгибающих моментов

Формула кривизны балки в заданном сечении

Кривизна балки в заданном сечении

Расчет нормальных напряжений в произвольной точке сечения балки

Формула расчета нормальных напряжений в точках сечения балки при изгибе

Условие прочности по нормальным напряжениям при изгибе (проверочный расчет)

Условие прочности по нормальным напряжениям (формула)

Осевые моменты инерции I и сопротивления W

  • прямоугольного сечения
    Осевые момент инерции и момент сопротивления прямоугольного сечения
    h – высота сечения,
    b – ширина сечения балки.
  • круглого сечения балки
    Осевые момент инерции и момент сопротивления круглого сечения балки
    D — диаметр сечения

Касательные напряжения в произвольной точке сечения определяются по формуле Журавского:

Формула для расчета касательных напряжений в произвольной точке сечения

Sx * — статический момент относительно оси x отсеченной части сечения

b — ширина сечения на уровне рассматриваемой точки

Условие прочности балки по касательным напряжениям

Условие прочности по касательным напряжениям (формула)

Дифференциальное уравнение изогнутой оси балки

Уравнения метода начальных параметров

θ z, yz — соответственно угол наклона и прогиб сечения балки на расстоянии z от начала координат,
θ , y — соответственно угол наклона и прогиб сечения балки в начале координат,
m, F, q — соответственно все изгибающие моменты, сосредоточенные силы и распределенные нагрузки приложенные к балке,
a, b — расстояние от начала координат до сечений где приложены моменты и силы соответственно,
c — расстояние от начала координат до начала распределенной нагрузки q.

Источник

Adblock
detector