Меню

Формула коэффициента усиления мощности резистивного усилителя

Характеристики усилителей: классификация, диаграммы, основные параметры

Содержание

  1. Классификация усилителей
  2. По частоте усиливаемого сигнала:
  3. По роду усиливаемого сигнала
  4. По функциональному назначению
  5. Амплитудная характеристика усилителя
  6. Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.
  7. Переходная характеристика усилителя

Усилитель — это электронное устройство, управляющее потоком энергии, идущей от источника питания к нагрузке. Причем мощность, требующаяся для управления, как правило, намного меньше мощности, отдаваемой в нагрузку, а формы входного (усиливаемого) и выходного (на нагрузке) сигналов совпадают (рис. 2.1).

Классификация усилителей

Все усилители можно классифицировать по следующим признакам:

По частоте усиливаемого сигнала:

  • усилители низкой частоты (УНЧ) для усиления сигналов от десятков герц до десятков или сотен килогерц;
  • широкополосные усилители, усиливающие сигналы в единицы и десятки мегагерц;
  • избирательные усилители, усиливающие сигналы узкой полосы частот;

По роду усиливаемого сигнала

  • усилители постоянного тока (УПТ), усиливающие электрические сигналы с частотой от нуля герц и выше;
  • усилители переменного тока, усиливающие электрические сигналы с частотой, отличной от нуля;

По функциональному назначению

  • усилители напряжения, усилители тока и усилители мощности в зависимости от того, какой из параметров усилитель усиливает. Основным количественным параметром усилителя является коэффициент усиления.

В зависимости от функционального назначения усилителя различают коэффициенты усиления по напряжению К U, току К i или мощности К Р:

где U вх, I вх — амплитудные значения переменных составляющих соответственно напряжения и тока на входе;

U вых , I вых — амплитудные значения переменных составляющих соответственно напряжения и тока на выходе;

Р вх, Р вых — мощности сигналов соответственно на входе и выходе. Коэффициенты усиления часто выражают в логарифмических единицах — децибелах:

Усилитель может состоять из одного или нескольких каскадов. Для многокаскадных усилителей его коэффициент усиления равен произведению коэффициентов усиления отдельных его каскадов: К = К 1 · К 2 · … · К n

Если коэффициенты усиления каскадов выражены в децибелах, то общий коэффициент усиления равен сумме коэффициентов усиления отдельных каскадов:

Обычно в усилителе содержатся реактивные элементы, в том числе и «паразитные», а используемые усилительные элементы обладают инерционностью. В силу этого коэффициент усиления является комплексной величиной:

где К U— модуль коэффициента усиления; φ — сдвиг фаз между входным и выходным напряжениями с амплитудами U вх и U вых.

Помимо коэффициента усиления важным количественным показателем является коэффициент полезного действия:

где Р ист — мощность, потребляемая усилителем от источника питания.

Роль этого показателя особенно возрастает для мощных, как правило, выходных каскадов усилителя.

К количественным показателям усилителя относятся также входное R вх и выходное R вых сопротивления усилителя:

где U вх и I вх — амплитудные значения напряжения и тока на входе усилителя;

∆U вых и ∆I вых — приращения аплитудных значений напряжения и тока на выходе усилителя, вызванные изменением сопротивления нагрузки. Рассмотрим теперь основные характеристики усилителей.

Интересное видео о параметрах усилителя смотрите ниже:

Амплитудная характеристика усилителя

Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).

Точка 1 соответствует напряжению шумов, измеряемому при U вx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.

Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.

После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):

где U lm, U 2m, U 3m, U nm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = U вх max / U вх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3).

При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы u бэ в силу нелинейности входной характеристики транзистора i б = f(u бэ) входной ток транзистора i б (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.

Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.

Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.

АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.

Читайте также:  Тепловые насосы высокой мощности

Частоты f н и f в называются нижней и верхней граничными частотами, а их разность (f н − f в) — полосой пропускания усилителя.

При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.

При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K 0 / K f где K f — модуль коэффициента усиления усилителя на заданной частоте.

Коэффициенты частотных искажений М Н = K 0 / K Н и М В = K 0 / K В называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f).

Обычно в качестве точек отсчета выбирают частоты, соответствующие f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6.

Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.

ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

Переходная характеристика усилителя

Переходная характеристика усилителя— это зависимость выходного сигнала (тока, напряжения) от времени при скачкообразном входном воздействии (рис. 2.8).

Частотная, фазовая и переходная характеристики усилителя однозначно связаны друг с другом. Области верхних частот соответствует переходная характеристика в области малых времен, области нижних частот — переходная характеристика в области больших времен.

Ещё одно интересное видео по теме смотрите ниже:

Источник

Коэффициенты усиления усилителей

Среди многих показателей, усилительных устройств важнейшими являются коэффициенты усиления. Различают коэффициенты усиления по мощности K P = Р ВЫХ/ Р ВХ, по напряжению K = U ВЫХ/ U ВХ и по току K Т = I ВЫХ/ I ВХ. Особенно широко используется коэффициент усиления сигнала по напряжению (поэтому его обычно приводят без индекса), а также сквозной коэффициент усиления по напряжению K СКВ. Все они определяются при гармоническом входном сигнале в режиме усиления.

Коэффициент усиления по напряжению K представляет собой отношение значения комплексной амплитуды напряжения сигнала на выходе к комплексной амплитуде напряжения сигнала на входе усилителя:

где – модуль коэффициента усиления; φ K – сдвиг фазы между выходным и входным напряжениями сигнала, возникающий из-за влияния реактивных составляющих сопротивлений в цепях усилителя и в нагрузке, а также из-за влияния инерционности УЭ.

Сквозной коэффициент усиления по напряжению K СКВ представляет собой отношение значения комплексной амплитуды напряжения сигнала на выходе усилителя к амплитуде ЭДС источника сигнала:

,

где – модуль сквозного коэффициента усиления по напряжению;

– напряжение источника сигнала;

– сдвиг фазы между выходным напряжением сигнала усилителя и ЭДС источника сигнала.

Сквозной коэффициент усиления по напряжению позволяет оценить усилительные свойства усилителя в целом с учетом входной цепи, что совершенно необходимо при использовании усилителя с обратной связью. Его можно представить в виде произведения коэффициента передачи напряжения входной цепи усилителя и коэффициента усиления по напряжению :

,

где – комплексный коэффициент передачи напряжения входной цепи усилителя, характеризуемый модулем k 1И = U вх/ e 1И и углом сдвига фазы φ вх между входным напряжением сигнала усилителя и ЭДС источника сигнала.

Коэффициент усиления по току K T представляет собой отношение установившегося значения комплексной амплитуды тока сигнала на выходе к комплексной амплитуде тока сигнала на входе усилителя:

где – модуль коэффициента усиления по току;

φ K т – сдвиг фазы между выходным и входным токами усилителя.

Как видно, в общем случае K, K СКВ, k 1И и K Т являются комплексными величинами, зависящими от частоты.

Читайте также:  Трактор двигаясь с постоянной скоростью развивая мощность 60 квт

Очень часто представляют интерес коэффициенты усиления и коэффициент передачи входной цепи в области средних частот, где влияние реактивных составляющих сопротивлений в цепях усилителя и инерционных свойств УЭ пренебрежимо мало и сдвиги фаз равны нулю φ K = 0, φ вх = 0, φ K т = 0, а модули коэффициентов усиления и коэффициента передачи входной цепи не зависят от частоты, являясь действительными величинами:

; ; .

Здесь индекс ноль обозначает средние частоты.

На практике проще всего измерять коэффициент усиления по напряжению, так как в этом случае не надо разрывать цепь для проведения измерений. Он удобен для сравнительной оценки усилительных свойств на различных УЭ, так как измерительных приборов, таких как вольтметр или осциллограф, в лабораториях значительно больше других.

И наконец, коэффициент усиления по мощности K P представляет собой отношение мощности сигнала Р вых, отдаваемой усилителем в нагрузку, к мощности сигнала Р вх, подводимой к входу усилителя от источника сигнала: K P = Р вых/ Р вх.

Следует отметить, что иногда применяют так называемый коэффициент усиления номинальной мощности источника сигнала K P ном = Р вых/ Р вх ном, где Р вх ном = Е 2 ист/4 R вх – номинальная мощность, отдаваемая источником сигнала на согласованный с ним вход усилителя, т. е. при R ист = R вх, когда k 1И = 0,5 и U вх = 0,5 e 1И.

Коэффициенты усиления выражаются как в относительных значениях (в разах), так и в логарифмических единицах – децибелах:

Источник



2.2. Резистивный и резонансный усилители

Резистивный усилитель – это усилитель, у которого в качестве нагрузки используются резисторы. Так как в этом усилителе из-за от­сутствия катушек индуктивности (индуктивностью выводов элемен­тов пренебрегаем) не возникает колебательных процессов, то резистивный усилитель часто называют апериодическим усилителем. Резисторы в резистивном усилителе используются в качестве внут­ренней и внешней нагрузки.

Схема однокаскадного резистивного усилителя с общим эмиттером (рис. 2.5) при прочих равных условиях дает наибольший коэффициент уси­ления по мощности. В качестве внутренней и внешней нагрузки ис­пользуются резисторы RK и RH соответственно. Внешний нагрузочный резистор может отсутствовать, если в качестве внутренней коллек­торной нагрузки включены громкоговоритель, реле, линия связи и т.п. Назначение разделительных и блокировочных конденсаторов в схеме мы уже рассмотрели.

От рассмотренной простейшей схемы усилителя с ОЭ схему (рис. 2.5) отличают две особенности:

первая – использование вместо источника смещения (ЕБЭ) резистивного делителя напряжения, состоящего из резисторов R1 и R2. Делитель используется для экономии – не требуется дополнительного относительно сложного и доро­гостоящего источника питания. Сопротивления резисторов делителя подбирают так, чтобы на базу относительно эмиттера поступала толь­ко часть напряжения питания, равная открывающему напряжению ЕБЭ = 0,5…0,8 В. В простейших схемах резистор R2 исключают и ус­танавливают открывающее напряжение с помощью одного резистора R1;

вторая – использова­ние резистора RЭ. Сопротивление этого резистора равно RЭ = 0,1…1 кОм. Его назначение – обеспечить температурную стаби­лизацию параметров каскада. Стабилизация возникает благодаря воз­никающей отрицательной обратной связи, свойства которой будем рассматривать далее.

Работа резистивного усилителя при подаче на вход гармоническо­го сигнала иллюстрируется диаграммой токов и напряжений (рис. 2.6). На рис. 2.6, а приведена передаточная характе­ристика транзистора. Это зависимость выходного тока коллектора от управляющего напряжения между базой и эмиттером. На характери­стике показана рабочая точка, соответствующая открывающему на­пряжению EБЭ = 0,5… ,8 В и постоянному току коллектора IКО (для маломощных транзисторов IКО = 0,1…10 мА).

На рис. 2.6, в приведена зависимость от времени напряжения на базе транзистора, равного сумме напряжения смещения (ЕБЭ) и входного переменного сигнала. Амплитуда переменного сигнала для обеспечения линейного режима работы усилителя не должна превышать 0,1 В. Зависимость тока коллектора от времени, показана на рис. 2.6, б. График получен на основе кривых рис. 2.6, а и рис. 2.6, в. Порядок построения показан стрелками и штриховыми линиями.

Как видим, при увеличении входного напряжения увеличивается ток коллектора транзистора (см. рис. 2.5). Переменная составляющая этого тока, протекая по резисторам RК и RН создает на коллекторе транзистора переменное напряжение (рис. 2.6, г). Отметим, что при увеличении тока коллектора напряжение на коллекторе уменьшается, так как увеличивается падение напряжения на резисторах RК и RН – так возникает дополнительный фазовый сдвиг между входным и вы­ходным напряжениями, равный 180°.

Напряжение на выходе усилите­ля, возникающее на резисторе RН будет содержать только перемен­ную составляющую. Постоянное напряжение на коллекторе транзистора, равное UКО = ЕП – RКIКО отделено от резистора RН выход­ным разделительным конденсатором.

Читайте также:  Самый мощный локомотив мощность

Показатели резистивного усилителя легко получить, используя ра­нее полученные формулы. Входная проводимость резистивного уси­лителя с учетом резистивного делителя равна:

Выходное сопротивление равно:

При коэффициент усиления усилителя равен:

Например, если крутизна мало­мощного транзистора S = 20 мА/В, а сопротивление нагрузки RH = 0,5 кОм, то модуль коэффициента усиления по напряжению резистивного усилителя равен К = 10.

Отметим, что эти показатели получены на так называемых средних частотах входного сигнала, когда со­противления разделительных и блокировочных конденсаторов пре­небрежимо малы, а инерционность транзистора и его паразитные ем­кости не учитываются. Область средних частот (СЧ) показана на амплитудно-частотной характеристике (АЧХ) резистивного усилителя (рис. 2.7).

В области низких частот (НЧ) коэффициент усиления уси­лителя уменьшается из-за увеличения емкостных сопротивлений раз­делительных конденсаторов. На нулевой частоте сопротивление раз­делительных конденсаторов равно бесконечности, и коэффициент усиления усилителя равен нулю. С уменьшением частоты увеличива­ются также сопротивления блокировочных конденсаторов. Как прави­ло, это тоже приводит к уменьшению усиления усилителя.

На высоких частотах (ВЧ) начинают сказываться инерци­онность транзистора, емкости его переходов, а также паразитные ем­кости монтажа, возникающие между выводами радиоэлементов и корпусом устройства. Указанные емкости невелики. Однако с ростом частоты сопротивление внутренних емкостей транзистора и паразитных

емкостей монтажа уменьшается, и в пределе, при f ® ¥, выводы транзистора по переменному напряжению оказываются закороченными, а выводы радиоэлементов – соединенными с корпусом. Поэтому коэффициент усиления усилителя с ростом частоты уменьшается в пределе до нуля.

Для описания частотных свойств резистивного усилителя вводятся две граничные частоты: fНЧ и fВЧ граничные частоты для областей низких и высоких частот соответственно (рис. 2.7). Как правило, они определяются при условии равенства 0,707 от значения коэффициента усиления усилителя в области средних частот. Например, для телефонных кана­лов связи эти частоты обычно равны:

fНЧ = 300 Гц; fВЧ = 3400 Гц.

Все усилители для телефонной линии должны обеспечивать усиление в указанном диапазоне частот. В противном случае ухудшится качество связи, и, например, будет плохо работать модем компьютера.

Резонансный усилитель это усилитель, в качестве нагрузки ко­торого используется колебательный контур. В схеме резонансного усилителя с общим эмиттером (рис. 2.8) в качестве коллекторной нагрузки используется па­раллельный колебательный контур.

Подадим на вход каскада напря­жение с частотой (w), равной резонансной частоте колебательного кон­тура:

С такой же частотой будет изменяться ток коллек­тора, вызывая колебания в контуре. Как известно, на резонансной частоте индуктивная и емкостная составляющие проводимости конту­ра одинаковы, а их сумма равна нулю:

Следовательно, переменный ток коллектора будет протекать только по резисторам RК и RН (см. рис. 2.8). Так как, как правило, RК >> RН, то большая часть тока поступает на выход каскада, создавая на резисторе нагруз­ки RH большое выходное напряжение. Если частота входного сигнала (w) больше или меньше резонансной частоты (wР), то взаимной компен­сации проводимостей катушки и конденсатора контура не происходит, и переменный ток начинает ответвляться через катушку или конден­сатор, не поступая на выход каскада.

Амплитудно-частотная характеристика резонансного усилителя имеет вид (рис. 2.9). На ней отмечены резонансная частота усили­теля (fР), максимальный коэффициент усиления (К) и полоса пропуска­ния усилителя (П), определяемая по уровню 0,707К..

Найдем основные показатели резонансного усилителя: коэффици­ент усиления, АЧХ и полосу пропускания. Используя формулу (2.1) для усилителя с общим эмиттером и учитывая, что проводимость па­раллельного контура равна

где RCH суммарное сопротивление параллельно соединенных RK, RH и rKЭ.

На резонансной частоте выражение в круглых скобках в знаме­нателе формулы (2.4) равно нулю, и модуль коэффициента усиления ра­вен К = SRcН. Так как резонансный усилитель используется на часто­тах вблизи резонанса, то удобно ввести расстройку частоты Dw = w wР. Учитывая, что Dw 10. Поэтому резонансные усилители, как правило, обладают повышенной избира­тельностью, то есть способностью пропускать сигналы только вблизи резонансной частоты и не пропускать сигналы, частоты которых существенно отличается от частоты резонанса.

Резонансные усилители широко используются в приемниках для выделения и усиления сигналов нужной радиостанции и подавления сигналов других радиостанций. Для повышения избирательности в высококачественных резонансных усилителях вместо простейшего параллельного колебательного контура используются сложные поло­совые фильтры, содержащие несколько колебательных контуров.

Источник