Меню

Для схемы однополупериодного выпрямителя определить выпрямленное напряжение

Однофазные выпрямители: типовые схемы, осциллограммы и моделирование

Выпрямитель используется в цепи переменного тока для его преобразования в постоянный. Наиболее распространенным является выпрямитель, собранный из полупроводниковых диодов. При этом он, может быть собрать из дискретных (отдельных) диодов, либо быть в одном корпусе (диодная сборка).

Давайте рассмотрим, что такое выпрямитель, какими они бывают, а в конце статьи проведем имитационное моделирование в среде Multisim. Моделирование помогает закрепить теорию на практике, без сборки и реальных компонентов просмотреть формы напряжений и токов в цепи.

Схемы выпрямителей переменного напряжения

На изображениях выше представлен внешний вид диодных мостов. Но это не единственная схема выпрямления. Для однофазного напряжения существует три распространенных схемы выпрямления:

1. 1-полупериодная (1ф1п).

2. 2-полупериодная (1ф2п).

3. 2-полупериодная со средней точкой (1ф2п).

Однополупериодная схема выпрямления

Самая простая схема состоит всего лишь из одного диода, даёт на выходе постоянное нестабилизированное пульсирующее напряжение. Диоды подключается в цепь питания на фазный провод, либо на один из выводов обмотки трансформатора, вторым концом к нагрузке, второй полюс нагрузки – к нулевому проводу или второму выводу обмотки трансформатора.

Действующее значение напряжение в нагрузке равняется примерно половине амплитудного. Амплитудное значение напряжения это размах синусоиды питающей сети в общем случае для переменного тока

Uампл = Uдейств * √2.

Для электросетей России действующие напряжение однофазной сети – 220 В, а амплитудное примерно 311

Простыми словами – на выходе мы получаем пульсации длиною в пол периода (20 мс для 50 Гц) от 0 В, до 311 В. В среднем напряжение получается меньше чем 220 вольт, это используют для питания нетребовательных к качеству напряжения потребителей или для включения ламп накаливания в подсобных, хозяйственных помещениях и подъездах. Так снижается потребляемая мощность и возрастает срок службы.

Лирическое отступление:

Долговечность таких светильников колоссальная, я пришел в цех год назад, а лампу установили еще в 2013 году, так она до сих пор светит по 12 часов каждые сутки. Но такой свет нельзя использовать в рабочих помещениях, из-за высоких пульсаций. Осциллограмы входных и выходных напряжений изображены ниже:

Однополупериодная схема отсекает только одну полуволну, что вы и видите на эпюре выше. Из-за такого питания мы получаем большой коэффициент пульсаций.

Стоит сказать, что если немного сменить тему и перейти от сетевых выпрямителей, то однополупериодная схема широко используется в импульсной схемотехнике, выпрямляя напряжение вторичной обмотки импульсного трансформатора.

На маломощных импульсных источниках питания тоже используют эту схему. Именно так, скорее всего, сделано ваше зарядное устройство для мобильного телефона.

Двухполупериодная схема

Для снижения коэффициента пульсаций и ёмкости фильтра используют другую схему – двухполупериодную. Называется она – диодный мост. Переменное напряжение поступает на точку соединения разноименных полюсов диодов, а постоянное по знаку с одноименных. Выходное напряжение такого моста называют выпрямленным пульсирующим (или не стабилизированным). Именно такое включение диодов наиболее распространено во всех сферах электроники.

Двухполупериодная схема

На эпюрах вы видим, что обе вторая полуволна переменного напряжения «переворачивается» и поступает в нагрузку. В первую половину периода ток протекает через диоды VD1-VD4, во вторую через пару VD2-VD3.

Напряжение на выходе пульсирует с частотой в 100 Гц

Напряжение на выходе пульсирует с частотой в 100 Гц

Вторая схема используется в источниках питания со средней точкой, по сути это две однополупериодные объединенные со вторичной обмоткой трансформатора со средней точкой. Аноды подсоединяются к крайним концам обмотки, катоды к одному вывод нагрузки (плюсовой), второй вывод нагрузки подсоединяется к отводу от середины обмотки (средней точке).

Вторая двухполупериодная схема

График выходного напряжения аналогичен и мы его рассматривать не будем. Существенное отличие лишь в том, что ток одновременно протекает через один диод, а не через пару как в мосте. Это снижает потери энергии на диодном мосте и лишний нагрев полупроводников.

Уменьшение коэффициента пульсаций

Коэффициент пульсаций – это величина, которая отражает насколько сильно пульсирует выходное напряжение. Или наоборот – насколько стабильно и равномерно ток подаётся в нагрузку.

Чтобы снизить коэффициент пульсаций параллельно нагрузке (выходу диодного моста) устанавливают всевозможные фильтры. Самый простой вариант – установить конденсатор. Чтобы пульсации были как можно меньше, постоянная времени Rнагрузки Cфильтра должна быть на порядок (а лучше несколько) больше периода пульсаций (в нашем случае 10 мс).

Для этого либо нагрузка должна иметь высокое сопротивление и малый ток, либо ёмкость конденсатора достаточно большой.

Расчетное соотношение для подбора конденсатора выглядит так:

Расчетное соотношение для подбора конденсатора

Кп – это требуемый коэффициет пульсаций.

Для улучшения ряда характеристик фильтра могут применяться LC цепи, соединенные по схеме Г или П-фильтра, в отдельных случаях и другие конфигурации. Недостатком использования LC фильтров в радиолюбительской практики является необходимость подбора фильтрующего дросселя. А нужного по номиналу (индуктивности и току) зачастую нет под рукой. Поэтому приходится либо мотать самому, либо выходить из сложившейся ситуации другим образом – выпаяв из подобного по мощности блока питания.

Моделирование однофазных выпрямителей

Давайте закрепим эту информацию на практике и займемся моделированием электроцепей. Я решил, что для создания модели такой простой схемы отлично подойдет пакет Multisim – он наиболее прост в освоении из всех мне известных и меньше всего требует ресуров.

Однако алгоритмы моделирования у него проще чем в Orcad или Simulink (хотя это и математическое моделирование, а не имитационное), поэтому результаты моделирования некоторых схем не являются достоверными. Multisim подходит для изучения основ электроники, режимов работы транзистора, операционных усилителей.

Не стоит недооценивать возможностей этой программы, при должном подходе она способна отобразить работу сложных устройств.

Читайте также:  Встроенный стабилизатор напряжения 220в для дома

Мы рассмотрим модели первых двух схем, третья схема, по существу аналогична второй, но имеет меньшие потери за счет исключения двух ключей и большую сложность – из-за необходимости применения трансформатора с отводом от середины вторичной обмотки.

Однополупериодная схема

Однополупериодная схема

Схема, по которой происходит моделирование

Источник питания имитирует однофазную бытовую сеть с характеристиками:

220 в действующее напряжение;

В программе я не нашел амперметра и вольтметра, их роль выполняют мультиметры. Позже обратите внимание на обилие их настройки, и возможность выбора рода тока.

В приведенной модели мультиметр XMM1 – измеряет ток в нагрузке, XMM3 – напряжение на выходе выпрямителя, XMM2 – напряжение на входе, XSC2 – осциллограф. Обращайте внимание на подписи элементов – это исключит вопросы при анализе рисунков, которые будут ниже. Кстати в Multisim представлены модели реальных диодов, я выбрал самый распространенный 1n4007.

Осциллограма в Multisim

Красным цветом изображена осциллограмма на входе (канал А) в поле с результатами измерений. Синим цветом – выходное напряжение (канал В). У первого канала цена деления одной клеточки по вертикали – 200 В/дел, а у второго канала – 500. Я нарочно так сделал, чтоб разделить осциллограммы визуально иначе они сливались. Желтая вертикальная линия в левой трети экрана – это измеритель, величина напряжений в точке с максимальной амплитудой описана ниже черного экрана.

Амплитуда входа – 311.128 В, как и было сказано в начале статьи, а на выходе – 310.281 разница почти в один вольт обусловлена падением на диоде. В правой части изображения результаты измерений мультиметров. Названия окон соответствуют названиям мультиметров XMM в схеме.

Из эпюры мы видим, что действительно в нагрузку поступает только одна полуволна напряжения, а среднее его значение – 98 В, что больше чем в двое меньше входного действующего 220 В переменного по знаку.

На следующей схеме мы добавили фильтрующий конденсатор и один мультиметр для измерения тока нагрузки, запомните их подписи, чтобы не запутаться при изучении рисунков.

Резистор перед диодом нужен для измерения тока заряда конденсатор, чтобы узнать ток – разделите число вольт на 1 (сопротивление). Однако в дальнейшем мы заметим, что при больших токах на резисторе падает значительное напряжение, которое может сбить с толку при измерениях, в реальных условиях – это вызвало бы нагрев резистора и потерю КПД.

Схема

На осциллограмме изображено оранжевым входное напряжение, а красным входной ток. Кстати здесь заметен сдвиг тока в сторону опережения напряжения.

Осциллограма

На осциллограмме выходного сигнала мы видим как работает конденсатор – напряжение в нагрузке в то время, когда диод закрыт и проходит одна полуволна, спадает плавно, среднее его значение вырастает, а пульсации снижаются. После, на положительной полуволне, конденсатор подзаряжается и процесс повторяется.

Осциллограмма в Multisim

Увеличив сопротивление нагрузки в 10 раз, мы снизили ток, конденсатор не успевает разряжаться, пульсации стали гораздо меньше, таким образом мы доказали теоретические сведения описанные в предыдущем разделе о пульсациях и влиянии на них тока и ёмкости. Для того чтобы показать это мы могли изменить ёмкость конденсатора.

Осциллограмма в Multisim

Входной сигнал тоже изменился – токи заряда снизились, а их форма осталась прежней.

Осциллограмма в Multisim

Двухполупериодная схема

Давайте рассмотрим, как выглядит в действии схема выпрямления обоих полупериодов. Мы установили на вход диодный мост.

Двухполупериодная схема

На осциллограммах видно, что в нагрузку поступают обе полуволны, но пульсации очень большие.

Осциллограмма в Multisim

На входной осциллограмме появилась нижня часть полуволны у тока (красным цветом).

Осциллограмма в Multisim

Снизим пульсации установив фильтрующий электролитическй конденсатор по входу. На практике желательно параллельно ему установить еще и керамический, чтобы снизить высокочастотные составляющие синусоиды (гармоники).

Двухполупериодная схема

На входной осциллограмме видно, что добавилась обратная полуволна при заряде конденсатора (она становится положительной после моста).

На входной осциллограмме видно, что добавилась обратная полуволна при заряде конденсатора

На выходной осциллограмме видно, что пульсации стали меньше чем в первой схеме с фильтрующим конденсатором, обратите внимание – напряжение стремится к амплитудному, чем меньше пульсаций – тем ближе его среднее значение к амплитуде.

Пульсации стали меньше чем в первой схеме с фильтрующим конденсатором

Если увеличить ток нагрузки в 20 раз, снизив её сопротивление, мы увидим сильные пульсации на выходе.

Если увеличить ток нагрузки в 20 раз, снизив её сопротивление, мы увидим сильные пульсации на выходе

И бОльшие токи зарядов на входе, очень заметно смещение тока фазы. Процесс заряда конденсатора происходит не линейно, а экспоненциально, поэтому мы видим, что напряжение повышается, а ток падает.

Осциллограмма

Заключение

Выпрямители широко используются во всех сферах электроники и электричестве в целом. Выпрямительные цепи устанавливаются везде – от миниатюрных блоков питания и радиоприёмниках до цепей питания мощнейших двигателей постоянного тока в крановом оборудовании.

Моделирование отлично помогает понять процессы протекающих в схемах и изучить, как изменяются токи от изменения параметров цепи. Развитие современных технологий позволяет изучать сложные электрические процессы без наличия дорогого оборудования типа спектральных анализаторов, частотомеров, осциллографов, самописцев и сверхточных вольт-амперметров. Оно позволяет избежать ошибок при проектировании схем перед сборкой.

Источник

Работа 1.1

Исследование однополупериодного выпрямителя

1.1.1 Источники вторичного электропитания

Источники вторичного электропитания (ИВЭП) предназначены для получения напряжения, необходимо для питания различных электронных устройств. Действующее значение напряжения сети переменного тока составляет 220 В. В то же время для работы электронных приборов необходимо постоянное напряжение, величина которого обычно не превышает нескольких вольт. Вторичные источники получают энергию от первичных источников: сети переменного тока, аккумуляторов и т. д.

Структурная схема ИВЭП, получающего энергию от сети переменного тока, показана на рис. 1.1.1. Трансформатор Тр предназначен для изменения уровня переменного напряжения и гальванической развязки выпрямителя и питающей сети. Выпрямитель преобразует переменное напряжение синусоидальной формы в пульсирующее напряжение одной полярности. Сглаживающий фильтр уменьшает пульсации напряжения на выходе выпрямителя. Стабилизатор уменьшает колебания напряжения на нагрузке.

Читайте также:  Что такое испытание кабелей повышенным напряжением


Рис. 1.1.1

Рассмотренный источник питания имеет большие вес и габариты, определяемые прежде всего размерами трансформатора и сглаживающего фильтра. В настоящее время такие ИВЭП вытесняются преобразовательными устройствами, работающими на частотах, составляющих десятки и сотни килогерц. При этом удается значительно уменьшить размеры и вес устройства.

1.1.2 Выпрямители

Выпрямители служат для преобразования переменного напряжения питающей сети в постоянное. Основными компонентами выпрямителей служат вентили – элементы с явно выраженной нелинейной вольт-амперной характеристикой. В качестве таких элементов используют кремниевые диоды.

Однополупериодный выпрямитель. Простейшим является однополупериодный выпрямитель (рис. 1.1.2). Напряжение и ток нагрузки имеют форму, показанную на рис. 1.1.3. Выходное напряжение меньше входного на величину падения напряжения на открытом диоде.


Рис. 1.1.2

Среднее значение выпрямленного напряжения:

Здесь – действующее значение входного напряжения. С помощью формулы (1.1.1) по заданному значению напряжения можно найти входное напряжение выпрямителя.

Максимальное обратное напряжение на диоде:

Максимальный ток диода:

Важным параметром выпрямителя является коэффициент пульсаций выпрямленного напряжения, равный отношению максимального и среднего напряжений. Для однополупериодного выпрямителя коэффициент пульсаций

Выпрямленные напряжение и ток в схеме на рис. 1.1.2 имеют большой уровень пульсаций. Поэтому на практике такую схему применяют в маломощных устройствах в тех случаях, когда не требуется высокая степень сглаживания выпрямленного напряжения.

Двухполупериодные выпрямители. Меньший уровень пульсаций выпрямленного напряжения можно получить в двухполупериодных выпрямителях. На рис. 1.1.4 показана схема выпрямителя с выводом от средней точки вторичной обмотки трансформатора.

0

Рис. 1.1.4

Во вторичной обмотке трансформатора индуцируются напряжения и , имеющие противоположную полярность. Диоды проводят ток поочередно, каждый в течение полупериода. В положительный полупериод открыт диод VD1, а в отрицательный – диод VD2. Ток в нагрузке имеет одинаковое направление в оба полупериода, поэтому напряжение на нагрузке имеет форму, показанную на рис. 1.1.5. Выходное напряжение меньше входного на величину падения напряжения на диоде.

В двухполупериодном выпрямителе постоянная составляющая тока и напряжения увеличивается вдвое по сравнению с однополупериодной схемой:

Из последней формулы определим действующее значение напряжения вторичной обмотки трансформатора:

Коэффициент пульсаций в данном случае значительно меньше, чем у однополупериодного выпрямителя:

Так как ток во вторичной обмотке трансформатора двухполупериодного выпрямителя синусоидальный, а не пульсирующий, он не содержит постоянной составляющей. Тепловые потери при этом уменьшаются, что позволяет уменьшить габариты трансформатора.

Существенным недостатком схемы на рис. 1.1.4 является то, что к запертому диоду приложено обратное напряжение, равное удвоенной амплитуде напряжения одного плеча вторичной обмотки трансформатора:

Поэтому необходимо выбирать диоды с большим обратным напряжением. Более рационально используются диоды в мостовом выпрямителе (рис. 1.6).


Рис. 1.1.6

Эта схема имеет такие же значения среднего напряжения и коэффициента пульсаций, что и схема выпрямителя с выводом от средней точки трансформатора. Ее преимущество в том, что обратное напряжения на диодах в два раза меньше. Кроме того, вторичная обмотка трансформатора содержит вдвое меньше витков, чем вторичная обмотка в схеме на рис. 1.1.4.

1.1.3 Сглаживающие фильтры

Рассмотренные схемы выпрямителей имеют относительно большие значения коэффициента пульсаций. Между тем для питания электронной аппаратуры часто требуется выпрямленное напряжение с коэффициентом пульсаций, не превышающим нескольких процентов. Для уменьшения пульсаций используют специальные устройства – сглаживающие фильтры.

Простейшим является емкостный фильтр (С-фильтр). Рассмотрим его работу на примере однополупериодного выпрямителя (рис. 1.1.7).

0

Рис. 1.1.7

Сглаживание пульсаций выпрямленного напряжения и тока происходит за счет периодической зарядки конденсатора С (когда напряжение на вторичной обмотке трансформатора превышает напряжение на нагрузке) и последующей его разрядки на сопротивление нагрузки.

Временные диаграммы напряжений и токов выпрямителя показаны на рис. 1.1.8. На интервале времени диод открыт и конденсатор заряжается. На интервале диод закрыт и конденсатор разряжается через сопротивление . Для уменьшения пульсаций емкость конденсатора должна быть большой, чтобы постоянная времени разряда была намного больше периода выпрямленного напряжения.

Как следует из рис. 1.1.8, диод открыт только на интервале . Чем короче этот интервал, тем больше амплитуда тока через диод. Режим работы диода в схеме выпрямителя с фильтром оказывается достаточно тяжелым.

На практике используют и более сложные схемы сглаживающих фильтров, содержащих конденсаторы и индуктивные катушки. Они обеспечивают лучшее сглаживание. Основной недостаток таких фильтров – большие габариты и вес.

1.1.4 Стабилизаторы напряжения

В процессе работы ИВЭП напряжение на выходе сглаживающего фильтра может изменяться из-за колебаний сопротивления нагрузки, напряжения первичного источника и других факторов. Если отклонения напряжения превышают допустимую величину, в схему ИВЭП вводят стабилизаторы – устройства, обеспечивающее малые изменения выходного напряжения.

Существуют два типа стабилизаторов: параметрические и компенсационные. В параметрических стабилизаторах напряжения используют нелинейные элементы, имеющие участок ВАХ, на котором напряжение остается неизменным при изменении тока. Такой участок имеет обратная ветвь ВАХ стабилитрона.
Схема параметрического стабилизатора напряжения на кремниевом стабилитроне показана на рис. 1.1.9.

Схема представляет делитель напряжения, состоящий из резистора и стабилитрона VD. Нагрузочный резистор включен параллельно стабилитрону. Поэтому в режиме стабилизации, когда напряжение стабилитрона почти постоянно, постоянным будет и напряжение на нагрузке.

Найдем напряжение и ток стабилитрона графическим способом. ВАХ стабилитрона и линейной части цепи показаны на рис. 1.1.10. Поскольку , обратная ветвь ВАХ стабилитрона расположена в первом квадранте. Нагрузочная характеристика линейной подсхемы представляет прямую, проходящую через точки, соответствующие режимам холостого хода и короткого замыкания . Здесь . Точка пересечения нагрузочной прямой и ВАХ стабилитрона (точка А на рис. 1.1.10) является рабочей точкой и определяет ток и напряжение стабилитрона. Если входное напряжение изменится, нагрузочная прямая переместится параллельно самой себе. Изменятся и координаты рабочей точки (точка В
на рис. 1.1.10). При этом изменения выходного напряжения будут невелики до тех пор, пока рабочая точка находится на крутом участке ВАХ стабилитрона.

Читайте также:  Измеряют напряжение двумя параллельно включенными вольтметрами

0

Рис. 1.1.10

Для поддержания режима стабилизации сопротивление рассчитывают так, чтобы рабочая точка располагалась посередине рабочего участка ВАХ. Если входное напряжение изменяется от до , то можно найти по формуле

  1. – среднее значение напряжения на входе стабилизатора;
  2. – средний ток стабилитрона;
  3. – ток нагрузки.

Если входное напряжение будет изменяться, то будет изменяться и ток стабилитрона, однако напряжение стабилитрона, а следовательно, и напряжение нагрузки будут почти постоянными.

Основными параметрами, характеризующими качество стабилизатора, являются коэффициент стабилизации , выходное сопротивление , коэффициент полезного действия .

Коэффициент стабилизации – это отношение относительного изменения входного напряжения к относительному изменению напряжения на выходе:
.

Коэффициент стабилизации параметрического стабилизатора можно определить по приближенной формуле

В последнем выражении: — динамическое сопротивление стабилитрона на участке пробоя.
Поскольку , выходное сопротивление параметрического стабилитрона .

Коэффициент полезного действия стабилизатора равен отношению мощности, отдаваемой в нагрузку, к мощности, потребляемой от входного источника.

1.1.5 Рекомендации по выполнению предварительного расчета

Сопротивление нагрузочного резистора рассчитывается по формуле

Емкость сглаживающего конденсатора для однополупериодного выпрямителя (рис. 1.1.7) рассчитывается по приближенной формуле

  1. — частота напряжения источника переменного напряжения ( Гц);
  2. — коэффициент пульсаций (в относительных единицах).

Емкость конденсатора для двухполупериодного выпрямителя меньше в два раза:

В источнике вторичного электропитания с параметрическим стабилизатором напряжение на выходе выпрямителя целесообразно выбирать примерно в два раза большим напряжения нагрузки . Если используется мостовой выпрямитель, сопротивление балластного резистора находится по формуле

  1. — напряжение стабилитрона в режиме пробоя,
  2. — напряжение открытого диода,
  3. — минимальный ток стабилитрона.

В схеме с параметрическим стабилизатором емкость сглаживающего конденсатора рассчитывается по формуле:

Источник



Электроника

учебно-справочное пособие

  • Главная
  • Теория
  • Практика
  • Справочники
  • Схемы
  • Arduino
  • Тесты

Расчет выпрямителей напряжения

Выпрямители относятся ко вторичным источникам электропитания, для которых первичным источником являются сети переменного тока. Выпрямитель — это устройство, которое преобразует переменное напряжение питающей сети в однонаправленное пульсирующее. Именно однонаправленное пульсирующее так как назвать его постоянным немного некорректно. Существует и несколько иное определение: выпрямитель предназначен для преобразования переменного напряжения в импульсное напряжение одной полярности.

Выпрямители могут быть однополупериодные и двуполупериодные. К тому же они разделяются на однофазные и многофазные.

Однополупериодный выпрямитель

Рис. 1 — Диаграмма напряжений однополупериодного выпрямителя

Схема однополупериодного выпрямителя до боли проста и объяснять тут нечего. Для наглядности положительные и отрицательные полуволны показаны разными цветами (рис. 1). Поскольку диод обладает свойствами односторонней проводимости, на выходе получается пульсирующее напряжение одной полярности. Для схемы характерны следующие параметры:

Среднее значение выпрямленного напряжения:

Действующее значение входного напряжения:

Среднее значение выпрямленного тока:

Действующее значение тока во вторичной обмотке трансформатора:

Достоинства схемы — простота конструкции.

Недостатки — большие пульсации, малые значения выпрямленного тока и напряжения, низкий КПД.

Применяется такая схема для питания низкоомных нагрузок, некритичных к высоким пульсациям. В бытовой технике однолупериодные выпрямители применяются в основном в импульсных источниках питания: из-за большой рабочей частоты (около 15 кГц а иногда и выше) пульсации не столь чувствительны и их легче сгладить.

Двухполупериодный выпрямитель

Схема выпрямления с выводом от средней точки трансформатора

Рис. 2 — Диаграмма напряжений схемы выпрямителя с выводом от средней точки трансформатора

Пунктиром показано напряжение на входе второго диода. Как видно из графиков, во время первого полупериода первый диод открыт и на нагрузке создается падение напряжения. Во время второго полупериода первый диод закрывается, поскольку оказывается включенным в обратном направлении, а второй, наоборот, открывается и на нагрузке снова выделяется положительная полуволна. На схеме плюсиками и минусами обозначено действие полуволн переменного тока. Частота пульсаций двуполупериодного выпрямителя вдвое больше, что является его достоинством. Для такой схемы характерны следующие параметры:

Достоинства: удвоенные значения Uср и Iср , вдвое меньший коэффициент пульсаций по сравнению с однополупериодной схемой.

Недостатки: наличие трансформатора с двумя симметричными обмотками (что увеличивает его массогабаритные показатели). К тому же на диодах удвоенное обратное напряжение.

Мостовая схема выпрямителя

Рис. 3 — Схема мостового выпрямителя

Параметры такие же, как и двухполупериодной схемы со средним выводом, кроме обратного напряжения (оно в два раза меньше). Положительная полуволна (с верхнего по схеме вывода трансформатора) проходит через диод VD2, затем через нагрузку, затем через VD3 ко второму выводу трансформатора. При смене направления тока работают диоды VD4, VD1. Недостатком схемы считается удвоенное число диодов.

Достоинство — не нужен трансформатор со средней точкой.

Трехфазный выпрямитель

Однополупериодный трехфазный выпрямитель

Рис. 4 — Схема и диаграммы напряжений трехфазного однополупериодного выпрямителя

Каждая фаза смещена относительно другой на угол 120°. На нагрузке работает та фаза, у которой больше значение положительной полуволны в данный момент времени. В схеме диоды используются в течении 1/3 периода. При этом необходимо наличие средней точки.

Среднее значение выпрямленного напряжения:

Двухполупериодный трехфазный выпрямитель

Рис. 5 — Схема двухполупериодного трехфазного выпрямителя

По принципу действия такая схема аналогична однофазной двухполупериодной (мостовой). Для нее характерно:

Находит применение при различных величинах входного напряжения и токах нагрузки в сотни Ампер. Схема экономична, имеет низкие пульсации. Однако в реальных схемах коэффициент пульсаций составляет 8-10% из-за несимметричности фазных питающих напряжений.

Источники:

Электроника © ЦДЮТТ • Марсель Арасланов • 2019

Источник