Меню

Что такое мощность трансформатора для чайников

Назначение трансформатора тока и принцип его работы

Своевременная поверка и замена трансформатора тока, обязательные, так как от устройства зависит точность измерений при обслуживании особо мощных электроустановок, безопасность функционирования и взаимодействие с ними. Устройство понижает мощность до нужного уровня, давая возможность подключать измерительные приборы. Выбор трансформатора тока осуществляется под задачи (защита или измерение), конкретную мощность и особенности оборудования.

Понятие трансформатор тока, назначение

Под трансформаторами тока (ТТ) подразумевают аппараты статичного типа с электромагнитным принципом с обмотками (две или больше) на металлическом стержне (магнитопроводе) с выводами для подключения в сеть и к измерительным приборам.

Для чего применяют ТТ:

  • подсоединения измерителей, РЗиА (защитных реле), которые не выдержали бы первоначальной нагрузки. Происходит изолирование подключаемого и работающего узла от чрезмерных мощностей обслуживаемого оснащения;
  • расширение пределов измерений;
  • понижения тока по мощности и создание защиты;
  • контроль в цепях с высокими величинами, например, в сварочном аппарате, где ток достигает 150–250 А;
  • в любых других случаях, когда надо понизить ток.

ТТ работают с переменными, в крайнем случае с пульсирующими напряжением — если подключить к постоянному, то на выходе потенциал будет нулевым. Иногда встречается название «трансформатор постоянного тока», это значит, что в нем используются специальные выпрямители.

Где используются

ТТ широко применяются при транспортировке электроэнергии на большие расстояния, для распределения между приемниками. Они отличаются тем, что предназначены для выпрямительных, стабилизирующих, сигнальных, усиливающих, контрольных узлов, на станциях и объектах, производящих электричество. Именно поэтому к их точности и подключению требования чрезвычайно высокие — даже ничтожные отклонения значимые.

Где чаще всего и зачем применяют:

  • в промышленной, производственной энергетике, в релейных узлах подстанций, распределительных конструкциях, мощных электроустановках;
  • для замеров и в приборах, осуществляющих данную функцию. Ставят в узлы учета (коммерческого, бытового);
  • для контроля высоких величин, при подсоединении учетных устройств, электросчетчиков.

В чем разница между трансформаторами тока и напряжения

Если рассматривать вопрос, чем отличается трансформатор тока от трансформатора напряжения, то это алгоритм действия, назначение и компоновка, но иногда внешне приборы могут быть схожими.

Первичка может быть с одним витком через окно магнитопровода. На другой катушке строго определенный номинал.

Основное отличие: функционирует как источник тока со значением защищаемого участка. Данная величина почти независима от нагрузок на вторичке.

Наличие в ЭУ слабо и среднемощных ТТ обезопасит работы — элемент разделяет цепи высоких/низких мощностей, упрощает измерители, реле.

Устройства, например, способны осуществлять понижение с тысяч ампер до 5 А, 1 А.

Разновидности

Есть много видов ТТ, но в наиболее общем виде выбор трансформаторов тока учитывает, что изделия подразделяются на измерительные (ТТИ) и для защиты.

Токовый трансформатор может выполняться с возможностью открывать его, устанавливать и запирать, без отключения, в онлайн режиме.

Защитные ТТ

Трансформаторы защитные обычно релейного типа, «следят», чтобы проводящий манипуляции, влезающий в электросети электростанции, не получил смертельный удар. Внутри электросистем, создающих, транспортирующих, распределяющих энергию, для корректной работы присутствуют опасные значения. Но любое оборудование требует проверки, починки, обслуживания, поэтому оставляют «окно» безопасности в виде ТТ для специалистов-ремонтников.

Измерительные ТТ

Задача измерительного трансформатора тока ТТИ — преобразовывать величины, создавая возможность подсоединять вольтметр, амперметр, другой измеритель, не боясь, что он перегорит от чрезмерной нагрузки. При этом получают максимально точные, достоверные данные измерений. Другими словами, ТТ изолирует подключаемый девайс, не только для замеров, но и любой другой по потребности, от высоких мощностей.

Устройство и принцип работы

В основе работы — электромагнитная индукция. Аппарат разделяет высоковольтные токонесущие части и трансформирует величины энергии до безопасных или требуемых.

Суть работы ТТ. Если через первичку идет переменный определенной силы ток, то вторичная катушка, будучи с постоянной активной нагрузкой, например (резистор или обслуживаемая ЭУ), создает на них падение напряжения пропорционально току первички (зависимо от коэффициента трансформации) и сопротивлению. Напряжение уменьшается в максимально возможном диапазоне, возможности понижения почти бесконечные.

Устройство, схема трансформатора тока:

  • две (реже больше) обмотки на магнитопроводе из электростали:
  • первичная (включаемая в сеть). Это любая токопроводящая жила;
  • вторичная (от нее энергия подается к приемнику). Одиночная или групповая снабжается несколькими выводами для защитных цепей, приборов измерения и контроля;
  • выводы, клеммы.

Первичные витки подсоединяются последовательным методом, поэтому там полная нагрузка, вторичная же замыкается на нее (реле защиты, счетчики), пропуская ток пропорциональный величине на первой. Сопротивление измерителей малое и считается, что все трансформаторы тока функционируют в состоянии КЗ.

Есть несколько вариантов вторичных обмоток, обычно они создаются для подсоединения защитных приспособлений и для приборов контрольных, учетных. К катушкам обязательно должна подключаться нагрузка со строго регламентированным сопротивлением — даже ничтожные отклонения приводит к критическим погрешностям замеров, не селективности РЗ.

Работа ТТ поэтапно на примере схемы

Трансформатор тока как устроен, принцип работы поэтапно:

  1. Через первичную цепь (кол. витков W1) идет ток I1, преодолевается ее полное сопротивление Z1.
  2. Вокруг катушки образуется магнитное направленное поле Ф1, улавливаемое стержнем стоящим перпендикулярно к вектору (I1) данной величины. Ориентация деталей делает потери энергии почти нулевыми.
  3. Пересекающий перпендикулярные по отношению к нему витки W2 поток Ф1 создает там движущую силу Е2.
  4. Из-за последней во вторичной катушке (Z2) появляется ток I2, преодолевающий сопротивление (ее и подсоединенной нагрузки Zн).
  5. На клеммах витков вторичной катушки возникает понижение напряжения U2. Одно магнитное поле Ф2 от вторичных витков I2 понижает другое Ф1 в стержне. Возникший в нем трансформаторный поток Фт определяют суммой векторов (Ф1 и 2).

Принцип работы, отличия трансформатора напряжения основываются на электромагнитных явлениях, как и в токовых. Но разница в количестве витков обмоток и назначении. Важно учесть цели, на которые конструкция рассчитана, трансформаторы напряжения обслуживают потребителей, поэтому «заточены» на трансформацию питания для электроприборов, ТТ — для защитных и измерительных устройств, а также они используются при осуществлении контроля и работают в режиме КЗ.

Важность коэффициента трансформации, класса точности, погрешности

Коэффициент трансформации (КТ) — определяет пропорциональность преобразования, задается при проектировании ТТ, при выпуске обязательно проверяется. На схеме это К1, определяемый соотношением l1/l2 (двумя векторами).

Эффективность коэффициентов собранных изделий отображает класс точности. При реальном функционировании токовые величины не постоянные, поэтому коэффициент обозначают номинальным. Пример: 1000/5 — при 1 кА рабочего тока (первичного) во вторичной цепи действует нагрузка 5 А. Именно по описанным значениям и проводится расчет продолжительность эксплуатации этого трансформаторного тока.

Погрешность ТТ влияет на класс его точности и определяется сечением, уровнем проницаемости материала магнитопровода, величинами магнитного пути.

Возрастание сопротивления нагрузки во вторичной цепи, превышающее возможности ТТ (при этом там генерируется повышенное напряжение), провоцирует пробой изоляции — трансформатор выходит из строя, перегорает. Поэтому важно правильно подбирать данный параметр. Предельное сопротивление есть в справочных материалах.

Монтаж, подключение, опасные факторы

При пробое изоляции обмоток возникает возможность поражения током, но риск предотвращается заземлением вывода (обозначается на корпусе) вторички.

Читайте также:  Сечение кабеля по мощности электроплиты

На выводы вторичной катушки И1 и И2 токи полярные, они обязательно постоянно подсоединены на нагрузку. Идущая по первичной цепи энергия со значительным потенциалом (S=UI). В другой происходит трансформация, и при обрыве в ней там падает напряжение. Потенциал разомкнутых концов при протекании энергии большой, что представляет значительную опасность.

По описанным выше причинам все вторичные цепи ТТ собирают особо тщательно и надежно, на них и кернах, выведенных из функционирования, всегда ставят шунтирующие закоротки.

Как подключается ТТ

Есть несколько схем для изделий защитного типа. Рассмотрим подключение ТТ на трехфазное напряжение.

  • самая распространенная, защита одно- и многофазных систем от КЗ;
  • три ТТ соединяются в звезду.

Если ток ниже настроек на реле КА1–КА3, то это нормальная ситуация, защита не активируется. Ток на К0 — это сумма всех 3 фаз. При возрастании величин в одной из них растет ток и в ТТ. Произойдет сработка реле при КЗ и при превышении нагрузок.

  • защита от межфазных замыканий для создания цепей с нейтралью с заземлением;
  • для маломощных приемников с другими вариантами защиты.

Схема «треугольник и звезда» — для дифференциальной защиты.

Схема без обесточивания при КЗ на землю используется, но редко по этой же причине. Для защиты от замыканий между фазами и всплесков в одной из них.

ТТИ подсоединяются простым последовательным подключением первичных витков изделия.

Монтаж

Монтаж трансформаторов тока:

  1. Ревизия устройства, проверка изоляции (должно быть выше 1 кОм на 1 В);
  2. Отключают ЭУ;
  3. Убедится в обесточивании, зафиксировать заземления.
  4. Разметка, установка креплений. Запрещено размещать трансформатор вплотную к ЭУ (минимальный зазор — 10 см).
  5. Выставляются таблички, ограждения.
  6. Первичные витки подсоединяются последовательно, но с нагрузкой на вторичных. Если нет возможности подключить измеритель, то ее контакты замыкают, чтобы не было высоких мощностей на ней, которые приведут его повреждению.

ТТ не допускает холостого функционирования, его режим близок к КЗ: вторичные витки при подключении прибора к измеряемому току обязательно замыкаются. Иначе происходит перегревание, повреждающее изоляцию. Перед отсоединением измерителей сначала закорачивают катушки. У некоторых моделей для этого есть узлы клеммы, перемычки.

Расчет

Расчет трансформатора тока можно провести по онлайн-калькуляторам, подобрать по номиналу (например, для 10 кВ). Но это слишком упрощенные инструменты. Исчисления и параметры для выбора — чрезвычайно обширная тема, поэтому опишем основы.

Источник

Устройство и принцип работы трансформатора

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем знакомство с электронными компонентами и в этой статье рассмотрим устройство и принцип работы трансформатора.

Трансформаторы нашли широкое применение в радио и электротехнике и применяются для передачи и распределения электрической энергии в сетях энергосистем, для питания схем радиоаппаратуры, в преобразовательных устройствах, качестве сварочных трансформаторов и т.п.

Трансформатор предназначен для преобразования переменного напряжения одной величины в переменное напряжение другой величины.

В большинстве случаев трансформатор состоит из замкнутого магнитопровода (сердечника) с расположенными на нем двумя катушками (обмотками) электрически не связанных между собой. Магнитопровод изготавливают из ферромагнитного материала, а обмотки мотают медным изолированным проводом и размещают на магнитопроводе.

Одна обмотка подключается к источнику переменного тока и называется первичной (I), с другой обмотки снимается напряжение для питания нагрузки и обмотка называется вторичной (II). Схематичное устройство простого трансформатора с двумя обмотками показано на рисунке ниже.

1. Принцип работы трансформатора.

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

Читайте также:  Мощность частотно модулированного сигнала

2. Устройство трансформатора.

2.1. Магнитопровод. Магнитные материалы.

Назначение магнитопровода заключается в создании для магнитного потока замкнутого пути, обладающего минимальным магнитным сопротивлением. Поэтому магнитопроводы для трансформаторов изготавливают из материалов, обладающих высокой магнитной проницаемостью в сильных переменных магнитных полях. Материалы должны иметь малые потери на вихревые токи, чтобы не перегревать магнитопровод при достаточно больших значениях магнитной индукции, быть достаточно дешевыми и не требовать сложной механической и термической обработки.

Магнитные материалы, используемые для изготовления магнитопроводов, выпускаются в виде отдельных листов, либо в виде длинных лент определенной толщины и ширины и называются электротехническими сталями.
Листовые стали (ГОСТ 802-58) изготавливаются методом горячей и холодной прокатки, ленточные текстурованные стали (ГОСТ 9925-61) только методом холодной прокатки.

Также применяют железноникелевые сплавы с высокой магнитной проницаемостью, например, пермаллой, перминдюр и др. (ГОСТ 10160-62), и низкочастотные магнитомягкие ферриты.

Для изготовления разнообразных относительно недорогих трансформаторов широко применяются электротехнические стали, имеющие небольшую стоимость и позволяющие трансформатору работать как при постоянном подмагничивании магнитопровода, так и без него. Наибольшее применение нашли холоднокатаные стали, имеющие лучшие характеристики по сравнению со сталями горячей прокатки.

Сплавы с высокой магнитной проницаемостью применяют для изготовления импульсных трансформаторов и трансформаторов, предназначенных для работы при повышенных и высоких частотах 50 – 100 кГц.

Недостатком таких сплавов является их высокая стоимость. Так, например, стоимость пермаллоя в 10 – 20 раз выше стоимости электротехнической стали, а пермендюра – в 150 раз. Однако в ряде случаев их применение позволяет существенно снизить массу, объем и даже общую стоимость трансформатора.

Другим их недостатком является сильное влияние на магнитную проницаемость постоянного подмагничивания, переменных магнитных полей, а также низкая стойкость к механическим воздействиям – удар, давление и т.п.

Из магнитомягких низкочастотных ферритов с высокой начальной проницаемостью изготавливают прессованные магнитопроводы, которые применяют для изготовления импульсных трансформаторов и трансформаторов, работающих на высоких частотах от 50 – 100 кГц. Достоинством ферритов является невысокая стоимость, а недостатком является низкая индукция насыщения (0,4 – 0,5 Т) и сильная температурная и амплитудная нестабильность магнитной проницаемости. Поэтому их применяют лишь при слабых полях.

Выбор магнитных материалов производится исходя из электромагнитных характеристик с учетом условий работы и назначения трансформатора.

2.2. Типы магнитопроводов.

Магнитопроводы трансформаторов разделяются на шихтованные (штампованные) и ленточные (витые), изготавливаемые из листовых материалов и прессованные из ферритов.

Шихтованные магнитопроводы набираются из плоских штампованных пластин соответствующей формы. Причем пластины могут быть изготовлены практически из любых, даже очень хрупких материалов, что является достоинством этих магнитопроводов.

Ленточные магнитопроводы изготавливаются из тонкой ленты, намотанной в виде спирали, витки которой прочно соединены между собой. Достоинством ленточных магнитопроводов является полное использование свойств магнитных материалов, что позволяет уменьшить массу, размеры и стоимость трансформатора.

В зависимости от типа магнитопровода трансформаторы подразделяются на стрежневые, броневые и тороидальные. При этом каждый из этих типов может быть и стрежневым и ленточным.

В магнитопроводах стержневого типа обмотки располагается на двух стержнях ( стержнем называют часть магнитопровода, на которой размещают обмотки). Это усложняет конструкцию трансформатора, но уменьшает толщину намотки, что способствует снижению индуктивности рассеяния, расхода проволоки и увеличивает поверхность охлаждения.

Стержневые магнитопроводы используют в выходных трансформаторах с малым уровнем помех, так как они малочувствительны к воздействию внешних магнитных полей низкой частоты. Это объясняется тем, что под влиянием внешнего магнитного поля в обеих катушках индуцируются напряжения, противоположные по фазе, которые при равенстве витков обмоток компенсируют друг друга. Как правило, стержневыми выполняются трансформаторы большой и средней мощности.

В магнитопроводе броневого типа обмотка располагается на центральном стержне. Это упрощает конструкцию трансформатора, позволяет получить более полное использование окна обмоткой, а также создает некоторую механическую защиту обмотки. Поэтому такие магнитопроводы получили наибольшее применение.

Некоторым недостатком броневых магнитопроводов является их повышенная чувствительность к воздействию магнитных полей низкой частоты, что делает их малопригодными к использованию в качестве выходных трансформаторов с малым уровнем помех. Чаще всего броневыми выполняются трансформаторы средней мощности и микротрансформаторы.

Тороидальные или кольцевые трансформаторы позволяют полнее использовать магнитные свойства материала, имеют малые потоки рассеивания и создают очень слабое внешнее магнитное поле, что особенно важно в высокочастотных и импульсных трансформаторах. Но из-за сложности изготовления обмоток не получили широкого применения. Чаще всего их делают из феррита.

Для уменьшения потерь на вихревые токи шихтованные магнитопроводы набираются из штампованных пластин толщиной 0,35 – 0,5 мм, которые с одной стороны покрывают слоем лака толщиной 0,01 мм или оксидной пленкой.

Лента для ленточных магнитопроводов имеет толщину от нескольких сотых до 0,35 мм и также покрывается электроизолирующей и одновременно склеивающейся суспензией или оксидной пленкой. И чем тоньше слой изоляции, тем плотнее происходит заполнение сечения магнитопровода магнитным материалом, тем меньше габаритные размеры трансформатора.

За последнее время наряду с рассмотренными «традиционными» типами магнитопроводов находят применение новые формы, к числу которых следует отнести магнитопроводы «кабельного» типа, «обращенный тор», катушечный и др.

На этом пока закончим. Продолжим во второй части.
Удачи!

1. В. А. Волгов – «Детали и узлы радио-электронной аппаратуры», Энергия, Москва 1977 г.
2. В. Н. Ванин – «Трансформаторы тока», Издательство «Энергия» Москва 1966 Ленинград.
3. И. И. Белопольский – «Расчет трансформаторов и дросселей малой моности», М-Л, Госэнергоиздат, 1963 г.
4. Г. Н. Петров – «Трансформаторы. Том 1. Основы теории», Государственное Энергетическое Издательство, Москва 1934 Ленинград.
5. В. Г. Борисов, – «Юный радиолюбитель», Москва, «Радио и связь» 1992 г.

Источник



Трансформатор простыми словами

Мы привыкли к тому, что напряжение в розетке всегда 220 В. Возможно не все читатели подозревают, что прежде чем поступить к потребителю, выполнялись преобразования электрической энергии. Перед поступлением на провода ЛЭП, напряжение переменного тока увеличивали до десятков, а то и сотен киловольт, а на выходе – понижали, до привычных нам 220 В. Эти преобразования выполнили силовые трансформаторы. В данной статье я расскажу вам, что такое трансформатор простыми словами.

Потребность в преобразования переменного напряжения возникает практически на каждом шагу. Чаще всего мы испытываем необходимость в понижении напряжения, так как большинство узлов современных электронных устройств работает при низких напряжениях. Однако для некоторых цепей высоковольтных узлов требуются значительные напряжения, порядка нескольких тысяч вольт.

Что такое трансформатор?

Если коротко, то это стационарное устройство, используемое для преобразования переменного напряжения с сохранением частоты тока. Действие трансформатора основано на свойствах электромагнитной индукции.

Читайте также:  Определить производственную мощность предприятия при следующих условиях

Немного исторических фактов

В основу действия трансформатора легло явление магнитной индукции, открытое М. Фарадеем в 1831 г. Физик, работая с постоянным электрическим током, заметил отклонение стрелки гальванометра, подключенного к одной из двух катушек, намотанных на сердечник. Причем гальванометр реагировал только в моменты коммутации первой катушки.

Поскольку опыты проводились от источника постоянного тока, Фарадей не смог объяснить открытое явление.

Прообраз трансформатора появился лишь в 1848 году. Его изобрел немецкий механик Г. Румкорф, называя устройство индукционной катушкой особой конструкции. Однако Румкорф не заметил трансформации выходных напряжений.Датой рождения первого трансформатора считается день выдачи патента П. Н. Яблочкову на изобретение устройства с разомкнутым сердечником. Это случилось 30.11.1876 года.

Типы аппаратов с замкнутыми сердечниками появились в 1884 году. Их создали англичане Джон и Эдуард Гопкнинсоны.

По большому счету, технический интерес у электромехаников к переменному току возник только благодаря изобретению трансформатора. Идеи российского электротехника М. О. Доливо-Добровольского и всемирно известного Николы Тесла победили в спорах о преимуществах переменных напряжений именно благодаря возможности трансформации тока.

С победой идей этих великих электротехников потребности в трансформаторах резко выросла, что привело к их усовершенствованию и созданию новых типов приборов.

Общее устройство и принцип работы

Рассмотрим конструкцию простого трансформатора, с двумя катушками насаженных на замкнутый магнитопровод (см. Рис. 2). Катушку, на которую поступает ток, будем называть первичной, а выходную катушку – вторичной.

Фактически все типы трансформаторов используют электромагнитную индукцию для преобразования напряжения поступающего в цепь первичной обмотки. При этом выходное напряжение снимается из вторичных обмоток. Они различаются только по форме, материалам магнитопроводов и способам наматывания катушек.

Ферромагнитные сердечники применяются в низкочастотных моделях. Для таких сердечников используются материалы:

  • сталь;
  • пермаллой;
  • феррит.

В некоторых высокочастотных моделях магнитопроводы могут отсутствовать, а в некоторых изделиях применяют материалы из высокочастотного феррита или альсифера.

В связи с тем, что для характеристик ферромагнетиков характерна нелинейность намагничивания, сердечники набирают из листовых материалов, на которые надевают обмотки. Нелинейная индуктивность приводит к гистерезису, для уменьшения которого применяют метод шихтования магнитопроводов.

Форма сердечника может быть Ш-образной или торроидальной.

Базовые принципы действия

Когда на выводы первичных обмоток поступает синусоидальный ток, то он во второй катушке создает переменное магнитное поле, пронизывающее магнитопровод. В свою очередь, изменение магнитного потока провоцирует наведение ЭДС в катушках. При этом величина напряжения ЭДС в обмотках находится в пропорциональной зависимости от количества витков и частоты тока. Отношение количества витков в цепи первичной обмотки к числу витков вторичной катушки называется коэффициентом трансформации: k = W 1 / W 2, где символами W 1 и W 2 обозначено количество витков в катушках.

Если k > 1, то трансформатор повышающий, а при 0 k = 1/3, тогда U 2 = 1/3 U 1.

Режимы работы

Силовой трансформатор может работать в трех режимах:

  • в состоянии холостого хода;
  • в режиме нагрузки;
  • в короткозамкнутом режиме.

Поскольку в цепи разомкнутой вторичной обмотки отсутствует ток, то в таком состоянии по первичной обмотке циркулирует ток холостого хода. Параметры этого тока используют при расчетах КПД, определяют коэффициент трансформации, находят потери в сердечнике.

Основным рабочим режимом трансформатора является состояние, когда к его второй обмотке подключена номинальная нагрузка. Первичный ток можно выразить через результирующую тока холостого хода и расчетного тока сопротивления нагрузки.

В режиме короткого замыкания вторичной обмотки, вся мощность концентрируется в цепях обмоток. В таком состоянии можно определить потери, расходуемые на нагревание проводов в обмотках.

Технические характеристики

Важной характеристикой являются коэффициенты трансформации. Они показывают зависимость выходного напряжения от соотношения витков в обмотках. Коэффициент трансформации является базовым параметром при расчете.

Другая важная характеристика трансформатора – его КПД. В некоторых аппаратах этот показатель составляет 0,9 – 0,98, что характеризует незначительные потери магнитных полей рассеяния. Мощность P зависит от площади S сечения магнитопровода. По значению S, при расчетах параметров трансформатора, определяют количество витков в катушках: W = 50 / S.

На практике мощность выбирают исходя из предполагаемой нагрузки, с учетом потерь в сердечнике. Мощность вторичной обмотки P н= U н× I н, а мощность первичной катушки P с= U с× I с. В идеале P н = P с (если пренебречь потерями в сердечнике). Тогда k = U с / U н = I с / I н , то есть, токи в каждой из обмоток имеют обратно пропорциональную зависимость от их напряжений, следовательно, и от количества витков.

Виды трансформаторов

С
целью решения вопросов трансформации напряжения в различных цепях изобретены
трансформаторы самых разных конструкций. Производители выбирают свои концепции магнитопроводов
(см. рис. 4), которые не влияют на работу и параметры приборов:

  • стержневой тип (применяется в основном для трехфазных конструкций);
  • броневой тип (трехфазные аппараты);
  • тороидальный тип сердечника часто используется в трансформаторах, применяемых в различных электротехнических устройствах.

Более широкий спектр охватывает классификация по назначению.

Силовые

Назначения силового трансформатора понятно из названия. Термин силовые применяется к семейству моделей, как правило, большой мощности, используемых для преобразования электрической энергии в сетях ЛЭП и в различных обслуживающих установках.

При трансформации сохраняются частоты переменного тока, поэтому возможно подключение силовых трансформаторов в группы для работы в высоковольтных трехфазных сетях.

Силовые аппараты могут соединяться в группы с различными схемами подключения обмоток: по принципу звездочки, треугольником или зигзагом. Схема звездочка оправдана, если в трехфазных сетях нагрузка симметрическая. В противном случае предпочтения отдают треугольнику. При таком способе подключения токи первичной обмотки подмагничивают по отдельности каждый стержневой магнитопровод.

Тогда однофазное сопротивление приблизится к расчетному, а перекос напряжений будет устранен.

Автотрансформаторы

Группа устройств, в которых первичная и вторичная обмотки за счет их прямого соединения между собой образуют электрическую связь, называется автотрансформаторами. Характерным признаком этой группы является несколько пар выводов, к которым можно подключить нагрузку.

Обмотки автотрансформаторов имеют не только магнитную, но и электрическую связь. Они нашли применение в соединениях заземленных сетей, работающих под напряжением, превышающим 110 кВ, но при низких коэффициентах трансформации – не более 3 – 4.

Можно первичную обмотку подключить последовательно в электрическую цепь с другими устройствами и получить гальваническую развязку. Такие приборы получили названия трансформаторов тока. Первичную цепь таких устройств контролируют путём изменения однофазной нагрузки, а вторичную катушку используют в цепях измерительных приборов или сигнализации. Второе название приборов – измерительные трансформаторы.

Особенностью работы измерительных трансформаторов является особый режим выходной обмотки. Она функционирует в критическом режиме короткого замыкания. При разрыве вторичной цепи возникает резкое повышение напряжения в ней, что может вызвать пробои или повреждение изоляции.

Напряжения

Типичное применение – изоляция логических цепей защиты измерительных приборов от высокого напряжения. Трансформатор напряжения – это понижающий прибор, преобразующий высокое напряжение в более низкое.

Источник