Меню

Что означают регуляторы напряжения

Регуляторы напряжения

Регуляторы напряжения используются для регулирования выходного напряжения. Различают стабилизаторы напряжения, регуляторы напряжения, делители напряжения

Типы регуляторов напряжения

Термин регулятор напряжения имеет достаточно широкое трактование.

Свободная энциклопедия «Википедия» определяет регулятор напряжения как электронное устройство дающее возможность менять значение напряжения на выходе.

Более точное определение приводим ниже.

Определение регулятора напряжения

К основным типам регуляторов напряжения относятся:

  • регулятор напряжения переменного тока;
  • регулятор напряжения постоянного тока;
  • делитель напряжения.

Сетевой стабилизатор напряжения, как один из видов регуляторов напряжения

Самым распространенным видом регулятора напряжения является стабилизатор напряжения. Обычно именно сетевой стабилизатор является предметом поискового запроса «регулятор напряжения».

Свободная энциклопедия «Википедия» даёт следующее определение стабилизатора напряжения.

Определение стабилизатора напряжения

Таким образом стабилизатор напряжения является частным случаем более общего понятия «регулятор напряжения».

Принято различать следующие типы стабилизаторов напряжения:

  • релейный стабилизатор;
  • симисторный стабилизатор;
  • сервоприводный (электромеханический) стабилизатор;
  • феррорезонансный стабилизатор.

Компания БАСТИОН является одним из лидеров в производстве стабилизаторов напряжения в России. Компания производит большой ассортимент стабилизаторов напряжения для инженерных систем и бытового использования. Подробнее о стабилизаторах компании БАСТИОН смотрите в разделе Стабилизаторы напряжения.

На следующем видео представлены стабилизаторы напряжения серии TEPLOCOM и SKAT.

Стабилизаторы напряжения компании БАСТИОН производятся в соответствии с требованиями российских ГОСТов и международных стандартов качества ISO 9001.

Заводской срок гарантии — 5 лет!

ЛАТР — лабораторный регулятор напряжения

ЛАТР — лабораторный автотрансформатор, используется для ручного регулирования напряжения. Автотрансформаторы — это специальные трансформаторы, в которых обмотки катушек подключены напрямую, в этом случае используется эффекты магнитной и электрической индукции. Такие приборы имеют более высокий уровень коэффициента полезного действия.

Кроме использования для лабораторных целей, ранее такие устройства использовались для ручного регулирования значения напряжения в быту. В советское время массово выпускались РНО (регуляторы напряжения однофазные), эти простые и дешёвые устройства позволяли вручную регулировать напряжение для питания телевизора. Такие устройства часто использовались в качестве повышающего «стабилизатора» в домах, где напряжение в сети было пониженным.

Фото регуляторов напряжения типа ЛАТР

Цифровой регулятор напряжения для систем управления

В системах автоматизации на промышленных объектах используется ещё один тип регулятора напряжения. Это цифровой регулятор напряжения для изменения скоростей вращения электромоторов путём регулирования значения подаваемого напряжения. Такое устройство используется, как правило, в сложном инженерном оборудовании. Примером может служить устройство для регулирования скорости вращения вентиляторов системы вентилирования в условиях воздействия внешних факторов. В этом случае на скорость вращения будет влиять несколько факторов, в том числе скорость ветра, перепад давления, температура воздуха в помещении и вне помещения. Задача регулирования скорости потока становится многокомпонентной, здесь и используются цифровые регуляторы напряжения.

Читайте также:  Электронные регуляторы напряжения 220 вольт

Цифровые регуляторы напряжения для систем управления

Фазовый регулятор напряжения

Фазовые регуляторы напряжения предназначены для регулирования уровня напряжения, подаваемого на электрический прибор с помощью механического или электронного управления. Фазовые регуляторы напряжения достаточно широко используются в быту, примером такого использования могут быть светильники с плавным регулированием яркости свечения лампочек. В основе принципа работы таких устройств лежит принцип задержки запускающего импульса с помощью управляемого ждущего мультивибратора. Применяются и схемы с применением цифровых устройств, которые позволяют выполнять задержку импульсов. Возможно использование инверторных схем, в этом случае входное сетевое напряжение на первом этапе преобразовывается в постоянный ток, а на втором этапе моделируется синусоидальное напряжение нужного значения.

Фазовые регуляторы напряжения

Делитель напряжения

Делитель напряжения — это один из видов регуляторов напряжения, позволяюющий разделить входное напряжение на несколько значений. При этом сумма напряжений на выходе устройства равна значению напряжения на входе прибора. Как правтло делители напряжения используются для подведения к различным элементах электрической схемы необходимого напряжения от одного источника питания. На основе использования регуляторов напряжения производятся такие приборы как: электрические фильтры, усилители входного напряжения и параметрические стабилизаторы напряжения.

Источник

Регулятор напряжения: описание, принцип работы, назначение

Регулятор напряжения – это устройство, предназначенное для автоматической поддержки в требуемых пределах значения напряжения потребителя электрической энергии. Такое устройство обеспечивает бесперебойную работу приборов при любом режиме работы: как при изменении электрической нагрузки, так и при любой температуре окружающей среды.

Регулятор напряжения часто используется для регулировки температуры нагрева паяльников, повышения или понижения яркости свечения ламп накаливания, скорости вращения генераторов и двигателей и т. д. Часто такие устройства называют регуляторами мощности, но это не совсем правильно. Более точное название — регулятор напряжения, или же диммер, потому что в действительности регулируется фаза. То есть изменяется время прохождения сетевой волны в нагрузку. В результате получаем регулировку напряжения с помощью скважности импульса, а также регулировку значения мощности потребляемой нагрузкой. Эффективно и целесообразно использовать эти приборы для регулирования напряжения с одновременно подключенной резистивной нагрузкой, например, с лампами накаливания, ТЭНами, обогревателями и пр. При работе с индуктивными нагрузками эффективность регулировки сильно снижается, это связано с тем, что индуктивный ток существенно ниже резистивного.

Регулятор напряжения для управления освещением

Такие устройства имеют малые габаритные размеры, их часто устанавливают вместо стандартного выключателя. Простой регулятор напряжения позволяет плавно регулировать силу свечения ламп. Назначение такого устройства заключается во включении и выключении освещения, ну, и, конечно же, для регулирования его интенсивности. Также некоторые модели регуляторов имеют и дополнительные функции: автоматическое включение (отключение) по таймеру, плавное отключение, голосовое или акустическое управление, дистанционное управление, подключение к программе «умный дом», а также имитация присутствия человека (включение и отключение, изменение интенсивности свечения по заданной программе). Существует множество различных типов регуляторов: модульные (внешне они похожи на обычные автоматические выключатели, их монтируют в электрощитах); для установки в монтажных коробках (такие диммеры устанавливаются как розетки и выключатели в монтажных коробках); моноблочные (также устанавливаются в коробках, выполнены в виде единого блока) и так далее.

Читайте также:  Чем больше сопротивление тем больше падение напряжения

Симисторный регулятор напряжения

Такие приборы благодаря простой схеме регулировки получили довольно широкое применение от регулировки скорости вращения однофазных двигателей с напряжением питания 220 В до регулировки яркости систем освещения. Основные преимущества симисторных регуляторов напряжения: высокая точность регулировки, большой ресурс работы элементов, малые габаритные размеры силового блока, невысокий уровень шума коммутации в силовых цепях. Кроме того, симисторы — это наиболее динамично развивающиеся компоненты мировой электроники. Объемы их производства, а также применение этих элементов постоянно растут.

Источник



Типы регуляторов напряжения

Объяснение трех различных типов регуляторов напряжения

Когда требуется стабильное, надежное напряжение, регуляторы напряжения являются неотъемлемым компонентом. Они принимают входное напряжение и создают регулируемое выходное напряжение независимо от входного напряжения либо на фиксированном уровне напряжения, либо на регулируемом уровне напряжения (путем выбора правильных внешних компонентов).

Это автоматическое регулирование уровня выходного напряжения обрабатывается различными методами обратной связи, некоторые из которых так же просты, как стабилитрон, в то время как другие включают сложные топологии обратной связи, которые могут улучшить производительность, надежность, эффективность и добавить другие функции, такие как повышение выходного напряжения выше входного напряжения для регулятор напряжения

Типы регуляторов напряжения

Существует несколько типов регуляторов напряжения, которые варьируются от очень доступных до очень эффективных. Наиболее доступным и часто самым простым типом регулятора напряжения являются линейные регуляторы напряжения.

Линейные регуляторы бывают нескольких типов, очень компактны и часто используются в системах с низким напряжением и низкой мощностью.

Импульсные регуляторы намного эффективнее линейных регуляторов напряжения, но с ними сложнее работать и они более дороги.

Линейные регуляторы

Одним из основных способов регулирования напряжения и обеспечения стабильного напряжения для электроники является использование стандартного 3-контактного линейного стабилизатора напряжения, такого как LM7805, который обеспечивает выходной сигнал 5 Вольт на 1 А при входном напряжении до 36 В ( в зависимости от модели).

Линейные регуляторы работают, регулируя эффективное последовательное сопротивление регулятора на основе напряжения обратной связи, по существу превращаясь в схему делителя напряжения. Это позволяет регулятору выдавать эффективное постоянное напряжение независимо от того, какая нагрузка на него возложена, вплоть до его текущей емкости.

Читайте также:  При каком максимальном напряжении для управления светильниками используют штепсельные розетки

Одним из существенных недостатков линейных регуляторов напряжения является большое минимальное падение напряжения на регуляторе напряжения, которое составляет 2,0 В на стандартном линейном стабилизаторе напряжения LM7805. Это означает, что для получения стабильного 5-вольтного выхода требуется как минимум 7-вольтный вход. Это падение напряжения играет большую роль в мощности, рассеиваемой линейным регулятором, который должен рассеивать не менее 2 Вт, если он выдает нагрузку 1 А (время падения напряжения 2 В 1 А).

Рассеиваемая мощность ухудшается, чем больше разница между входным и выходным напряжением. Так, например, в то время как 7-вольтовый источник, регулируемый на 5 вольт, подающий 1 ампер, будет рассеивать 2 Вт через линейный регулятор, 10-вольтный источник, отрегулированный на 5 вольт, подающий тот же самый ток, будет рассеивать 5 ватт, делая регулятор только 50 % эффективный.

Импульсные регуляторы

Линейные регуляторы являются отличным решением для маломощных и недорогих приложений, где разница напряжений между входом и выходом невелика и не требует большой мощности. Самым большим недостатком линейных регуляторов является то, что они очень неэффективны, и именно здесь включаются переключающие регуляторы.

Когда требуется высокая эффективность или ожидается широкий диапазон входного напряжения, включая входные напряжения ниже желаемого выходного напряжения, переключающий регулятор становится наилучшим вариантом. Импульсные регуляторы напряжения имеют КПД 85% или выше по сравнению с линейными регуляторами напряжения, которые часто ниже 50%.

Импульсные регуляторы обычно требуют дополнительных компонентов по сравнению с линейными регуляторами, и значения компонентов оказывают гораздо большее влияние на общую производительность импульсных регуляторов, чем линейные регуляторы.

Существует также более сложная задача при эффективном использовании регуляторов переключения без ущерба для производительности или поведения остальной части цепи из-за электронного шума, который может генерировать регулятор.

Стабилитроны

Одним из самых простых способов регулирования напряжения является стабилитрон. В то время как линейный регулятор является довольно базовым компонентом с несколькими дополнительными компонентами, необходимыми для работы, и очень малой сложностью конструкции, стабилитрон может обеспечить адекватное регулирование напряжения в некоторых случаях только одним компонентом.

Поскольку стабилитрон шунтирует все дополнительное напряжение, превышающее пороговое значение пробивного напряжения, на землю, его можно использовать в качестве очень простого регулятора напряжения с выходным напряжением, протянутым через выводы стабилитрона.

К сожалению, стабилитроны часто очень ограничены в своей способности управлять мощностью, что ограничивает возможности их использования в качестве регуляторов напряжения только для приложений с очень низким энергопотреблением. При использовании стабилитронов таким способом лучше всего ограничить доступную мощность, которая может протекать через стабилитрон, путем стратегического выбора резистора правильного размера.

Источник