Меню

Что называют магнитным напряжением намагничивающей силой

Магнитное поле и его характеристики

Содержание

  1. Основные свойства магнитного поля
  2. Вектор магнитной индукции
  3. Напряженность магнитного поля
  4. Направление вектора магнитной индукции и способы его определения
  5. Магнитное поле прямолинейного тока
  6. Магнитное поле кругового тока
  7. Магнитное поле электромагнита (соленоида)

Магнитное поле — особая форма материи, посредством которой осуществляется взаимодействие между движущимися электрическими частицами.

Основные свойства магнитного поля

  • Магнитное поле порождается электрическим током (движущимися зарядами).
  • Магнитное поле обнаруживается по действию на электрический ток (движущиеся заряды).
  • Магнитное поле существует независимо от нас, от наших знаний о нем.

Вектор магнитной индукции

Вектор магнитной индукции — силовая характеристика магнитного поля. Она определяет, с какой силой магнитное поле действует на заряд, движущийся в поле с определенной скоростью. Обозначается как→B. Единица измерения — Тесла (Тл).

За единицу магнитной индукции можно принять магнитную индукцию однородного поля, котором на участок проводника длиной 1 м при силе тока в нем 1 А действует со стороны поля максимальная сила, равна 1 Н. 1 Н/(А∙м) = 1 Тл.

Модуль вектора магнитной индукции — физическая величина, равная отношению максимальной силы, действующей со стороны магнитного поля на отрезок проводника с током, к произведению силы тока и длины проводника:

За направление вектора магнитной индукции принимается направление от южного полюса S к северному N магнитной стрелки, свободно устанавливающейся в магнитном поле.

Наглядную картину магнитного поля можно получить, если построить так называемые линии магнитной индукции. Линиями магнитной индукции называют линии, касательные к которым направлены так же, как и вектор магнитной индукции в данной точке поля.

Особенность линий магнитной индукции состоит в том, что они не имеют ни начала, ни конца. Они всегда замкнуты. Поля с замкнутыми силовыми линиями называют вихревыми. Поэтому магнитное поле — вихревое поле.

Замкнутость линий магнитной индукции представляет собой фундаментальное свойство магнитного поля. Оно заключается в том, что магнитное поле не имеет источников. Магнитных зарядов, подобным электрическим, в природе нет.

Напряженность магнитного поля

Вектор напряженности магнитного поля — характеристика магнитного поля, определяющая густоту силовых линий (линий магнитной индукции). Обозначается как →H. Единица измерения — А/м.

μ — магнитная проницаемость среды (у воздуха она равна 1), μ0 — магнитная постоянная, равная 4π·10−7 Гн/м.

Внимание! Направление напряженности всегда совпадает с направлением вектора магнитной индукции: →H ↑↑→B.

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.

Отсюда следует, что:

  • Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.
  • Если по витку ток идет по часовой стрелке, то вектор магнитной индукции →B направлен вниз.

Способы обозначения направлений векторов:

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Магнитное поле прямолинейного тока

Линии магнитной индукции представляют собой концентрические окружности, лежащие в плоскости, перпендикулярной проводнику. Центр окружностей совпадает с осью проводника.

Если ток идет вверх, то силовые линии направлены против часовой стрелки. Если вниз, то они направлены по часовой стрелке. Их направление можно определить с помощью правила буравчика или правила правой руки:

Правило буравчика (правой руки)

Если большой палец правой руки, отклоненный на 90 градусов, направить в сторону тока в проводнике, то остальные 4 пальца покажут направление линий магнитной индукции.

Модуль вектора магнитной индукции на расстоянии r от оси проводника:

Магнитное поле кругового тока

Силовые линии представляют собой окружности, опоясывающие круговой ток. Вектор магнитной индукции в центре витка направлен вверх, если ток идет против часовой стрелки, и вниз, если по часовой стрелке.

Определить направление силовых линий магнитного поля витка с током можно также с помощью правила правой руки:

Если расположить четыре пальца правой руки по направлению тока в витке, то отклоненный на 90 градусов большой палец, покажет направление вектора магнитной индукции.

Модуль вектора магнитной индукции в центре витка, радиус которого равен R:

Модуль напряженности в центре витка:

Пример №2. На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в вертикальной плоскости. Точка А находится на горизонтальной прямой, проходящей через центр витка. Как направлен (вверх, вниз, влево, вправо) вектор магнитной индукции магнитного поля в точке А?

Если мысленно обхватить виток так, чтобы четыре пальца правой руки были бы направлены в сторону тока, то отклоненный на 90 градусов большой палец правой руки показал бы, что вектор магнитной индукции в точке А направлен вправо.

Магнитное поле электромагнита (соленоида)

Соленоид — это катушка цилиндрической формы, витки которой намотаны вплотную, а длина значительно больше диаметра.

Число витков в соленоиде N определяется формулой:

l — длина соленоида, d — диаметр проволоки.

Линии магнитной индукции являются замкнутыми, причем внутри соленоида они располагаются параллельно друг другу. Поле внутри соленоида однородно.

Если ток по виткам соленоида идет против часовой стрелки, то вектор магнитной индукции →B внутри соленоида направлен вверх, если по часовой стрелке, то вниз. Для определения направления линий магнитной индукции можно воспользоваться правилом правой руки для витка с током.

Модуль вектора магнитной индукции в центральной области соленоида:

Модуль напряженности магнитного поля в центральной части соленоида:

Алгоритм определения полярности электромагнита

  1. Определить полярность источника.
  2. Указать на витках электромагнита условное направление тока (от «+» источника к «–»).
  3. Определить направление вектора магнитной индукции.
  4. Определить полюса электромагнита. Там, откуда выходят линии магнитной индукции, располагается северный полюс электромагнита (N, или «–». С противоположной стороны — южный (S, или «+»).

Пример №3. Через соленоид пропускают ток. Определите полюсы катушки.

Читайте также:  Убивает не ток убивает напряжение или сила тока

Ток условно течет от положительного полюса источника тока к отрицательному. Следовательно, ток течет по виткам от точки А к точке В. Мысленно обхватив соленоид пальцами правой руки так, чтобы четыре пальца совпадали с направлением тока в витках соленоида, отставим большой палец на угол 90 градусов. Он покажет направление линий магнитной индукции внутри соленоида. Проделав это, увидим, что линии магнитной индукции направлены вправо. Следовательно, они выходят из В, который будет являться северным полюсом. Тогда А будет являться южным полюсом.

Источник

Напряженность магнитного поля. Намагничивающая сила

Напряженность магнитного поля. Намагничивающая силаВокруг проводника или катушки с электрическим током всегда возникает магнитное поле. Магнитное поле постоянного магнита вызывается движением электронов по их орбитам в атоме.

Магнитное поле характеризуется напряженностью. Напряженность H магнитного поля аналогична механической силе. Она является векторной величиной, т. е. имеет величину и направление.

Магнитное поле, т. е. пространство вокруг магнита, можно представить заполненным магнитными линиями, которые принято считать выходящими из северного полюса магнита и входящими в южный (рис. 1). Касательные к магнитной линии показывают направление напряженности магнитного поля.

Напряженность магнитного поля больше там, где магнитные линии гуще (на полюсах магнита или внутри катушки с током).

Магнитное поле около проводника (или внутри катушки) тем больше, чем больше ток I и число витков ω катушки.

Напряженность магнитного поля H в любой точке пространства тем больше, чем больше произведение I∙ω и чем меньше длина магнитной линии:

Из уравнения следует, что единицей измерения напряженности магнитного поля является ампер на метр (А/м).

Для каждой магнитной линии в данном однородном поле произведения H1∙l1=H2∙l2=. =H∙l=I∙ω равны (рис. 1).

Магнит

Произведение H∙l в магнитных цепях аналогично напряжению в электрических цепях и называется магнитным напряжением, а взятое по всей длине линии магнитной индукции называется намагничивающей силой (н. с.) Fм: Fм=H∙l=I∙ω.

Намагничивающая сила Fм измеряется в амперах, но в технической практике вместо названия ампер применяется название ампер-виток, чем подчеркивается то, что Fм пропорциональна току и числу витков.

Для цилиндрической катушки без сердечника, длина которой значительно больше ее диаметра (l≫d), магнитное поле внутри катушки можно считать однородным, т. е. имеющим одинаковую напряженность магнитного поля H во всем внутреннем пространстве катушки (рис. 1). Так как магнитное поле вне такой катушки гораздо слабее, чем внутри нее, то внешним магнитным полем можно пренебречь и при расчете считать, что н. с. катушки равна произведению напряженности поля внутри катушки на длину катушки.

Полярность магнитного поля провода и катушки с током определяется правилом буравчика. Если поступательное движение буравчика совпадает с направлением тока, то направление вращения рукоятки буравчика укажет направление магнитных линий.

Намагничивающая сиала. Примеры

1. Через катушку, имеющую 2000 витков, протекает ток 3 А. Чему равна н. с. катушки?

Fм=I∙ω=3∙2000=6000 А. Намагничивающая сила катушки равна 6000 ампер-виткам.

2. Катушка, имеющая 2500 витков, должна иметь н. с. 10000 А. Какой ток должен через нее протекать?

3. По катушке протекает ток I=2 А. Сколько витков должно быть в катушке для обеспечения н. с. 8000 А?

ω= Fм/I=(I∙ω)/I=8000/2=4000 витков.

4. Внутри катушки длиной 10 см, имеющей 100 витков, необходимо обеспечить напряженность магнитного поля H=4000 А/м. Какой ток должен протекать по катушке?

Читайте также:  Реле напряжения ел 11м 15 схема

Намагничивающая сила катушки Fм=H∙l=I∙ω. Отсюда 4000 А/м ∙0,1 м =I∙100; I=400/100=4 А.

5. Диаметр катушки (соленоида) D=20 мм, а ее длина l=10 см. Катушка намотана из медного провода диаметром d=0,4 мм. Какова напряженность магнитного поля внутри катушки, если она включена на напряжение 4,5 В?

Число витков без учета толщины изоляции ω=l∶d=100∶0,4=250 витков.

Длина витка π∙d=3,14∙0,02 м =0,0628 м.

Длина провода катушки l1=250∙0,0628 м =15,7 м.

Активное сопротивление катушки r=ρ∙l1/S=0,0175∙(4∙15,7)/(3,14∙0,16)=2,2 Ом.

Ток I=U/r=4,5/2,2=2,045 А ≈2 А.

Напряженность магнитного поля внутри катушки H=(I∙ω)/l=(2∙250)/0,1=5000 А/м.

6. Определить напряженность магнитного поля на расстоянии 1, 2, 5 см от прямого провода, по которому протекает ток I=100 А.

Воспользуемся формулой H∙l=I∙ω.

Для прямого провода ω=1 и l=2∙π∙r,

H1=100/(2∙3,14∙0,01)=1590 А/м; H2=795 А/м; H3=318 А/м.

Источник



Что называют магнитным напряжением намагничивающей силой

§ 38. Напряженность магнитного поля

Возьмем проводник, свитый в виде спирали, и пропустим по нему электрический ток. Вокруг каждого витка такой спирали, которую называют соленоидом, (Соленоид происходит от греч. слова sölen — трубка и eidoc — вид) возникнут магнитные линии. Эти линии, складываясь, образуют общее магнитное поле (рис. 35, а).

Магнитное поле катушки (соленоида) имеет большое сходство с магнитным полем прямолинейного постоянного магнита. У катушки, так же как у постоянного магнита, есть два полюса — северный и южный.
Чем больше ток в катушке и чем больше число ее витков, тем сильнее создаваемое магнитное поле.
Намагничивающая сила катушки, по виткам которой протекает электрический ток, равна произведению числа витков W обмотки на силу тока I, протекающего по ней.

F = I W

Намагничивающую силу иногда называют магнитодвижущей силой.
Если одна катушка имеет обмотку из 1000 витков проволоки и по ней протекает ток 0,5 а, а другая катушка имеет 3000 витков и по ним протекает ток такой же силы, то первая катушка обладает намагничивающей силой

F1 = I W1 = 0,5 · 1000 = 500 а,

а намагничивающая сила второй катушки

F2 = I W2 = 0,5 · 3000 = 1500 а,

т. е. в три раза больше.
Для характеристики условий возбуждения магнитного поля применяют величину, называемую напряженностью магнитного поля.
Напряженность магнитного поля катушки зависит от силы тока, протекающего по ее виткам, числа витков, а также от ее геометрических размеров.

где I — сила тока, а;
W — число витков;
l — средняя длина магнитной линии, м (рис. 35, б);
H — напряженность магнитного поля (в СИ измеряется в а/м).
Величина, в 80 раз большая 1 а/м, называется эрстедом. Это единица измерения напряженности магнитного поля в системе CGSM (1 э = 80 а/м).
Приведенная формула позволяет определить напряженность поля катушки, если длина последней во много раз (в 10 — 20 и более) больше ее диаметра.

Пример. Обмотка, намотанная на цилиндрический каркас длиной l = 0,3 м, состоит из 1800 витков и по ним протекает ток I = 0,2 а. Вычислить напряженность магнитного поля внутри этой катушки.
Решение . Напряженность магнитного поля внутри катушки

Так как 1 э = 80 а/м, то 1200 а/м = 15 э.
Можно считать, что магнитная индукция В возникает под действием напряженности магнитного поля Н. Отношение зависит от магнитных свойств среды.

Источник