Меню

Чему равно производственное напряжение

Линейное и фазное напряжение — отличие и соотношение

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Линейное и фазное напряжение - отличие и соотношение

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Источник

Что такое напряжение

Содержание

  1. Напряжение с точки зрения гидравлики
  2. Электрическое напряжение
  3. Формула напряжения
  4. Напряжение тока – что это означает?
  5. Постоянное и переменное напряжение
  6. Осциллограммы постоянного и переменного напряжения

Что такое напряжение в электронике и электротехнике? Как его можно трактовать? Обо всем этом мы как раз и поговорим в нашей статье.

Напряжение с точки зрения гидравлики

Все вы видели и представляете, как выглядит водонапорная башня или просто водобашня. Грубо говоря, это большой высокий “бокал”, заполненный водой.

Так вот, представим себе, что башня доверху наполнена водой. Получается, в данный момент на дне башни ого-го какое давление!

А что, если слить из башни воду хотя бы наполовину? Давление на дно башни уменьшится вдвое. А давайте-ка нальем в пустую башню одно ведро воды! Давление на дно башни будет мизерное.

Представьте такую ситуацию. У нас есть водонос, а шланг мы закупорили пробкой.

Вода вроде бы готова бежать, но бежать то некуда! Пробка туго закупоривает шланг. Но на саму пробку сейчас оказывается давление, которое создает насосная станция. От чего зависит давление на пробку? Думаю понятно, что от мощности насоса. Если мощность насоса будет большая, то пробка вылетит со скоростью пули, или давление порвет шланг, если пробка туго сидит в шланге. В данном случае давление создается с помощью насоса. То есть можно сказать, что это модель башни с водой в горизонтальном положении.

Читайте также:  Определить вертикальные напряжения эпюра

Все то же самое можно сказать и про водобашню. Здесь давление на дно создается уже гравитационной силой. Как я уже говорил, давление на дне башни зависит от того, сколько воды в башне в данный момент. Если башня наполнена водой под завязку, то и давление на дне башни будет большое, и наоборот.

А теперь представьте себе какое давление на дне океана, особенно в Марианской впадине! Что можно сказать про давление в этих двух случаях? Оно вроде как есть, но молекулы воды стоят на месте и никуда не двигаются. Запомните этот момент. Давление есть, а движухи – нет.

Электрическое напряжение

Это давление на дно и есть то самое напряжение (по аналогии с гидравликой). В данном случае, дно башни – это ноль, начальный уровень отсчёта. За начальный уровень отсчёта в электронике берут вывод батарейки или аккумулятора со знаком “минус”. Можно даже сказать, что уровень “воды в башне” у 12-вольтового автомобильного аккумулятора выше, чем уровень воды 1,5 Вольтовой пальчиковой батарейки.

Так вот, по аналогии с электроникой, это давление называется напряжением. Например, вы, наверное, не раз слышали такое выражение, типа “блок питания может выдать от 0 и до 30 Вольт”. Или говоря детским языком, создать “электрическое давление” на своих клеммах (отметил на фото) от 0 и до 30 Вольт. Нулевой уровень, откуда идет отсчет электрического давления, обозначается минусом.

Электрическое напряжение – это еще не значит, что в электрической цепи течет электрический ток. Для того, чтобы появился электрический ток, электроны должны двигаться в одном направлении, а они в данный момент тупо стоят на месте. А раз нет движения электронов, то и нет электрического тока.

С точки зрения электроники, на одном щупе блока питания есть давление, а на другом его нет. То есть это земля, на которой стоит башня, если провести аналогию с гидравликой. Поэтому, положительный щуп блока питания да и вообще всех приборов стараются сделать красным, мол типа берегитесь, здесь высокое давление! А отрицательный щуп – черным или синим.

В электронике, чтобы указать, на каком выводе больше ” электрическое давление”, а на каком меньше проставляют два знака: плюс и минус, соответственно положительный и отрицательный. На плюсе избыточное “давление”, а на минусе – ноль.

Поэтому, если замкнуть эти два вывода между собой, электрический ток устремится от плюса к минусу, но напрямую этого делать крайне не рекомендуется, так как это уже будет называться коротким замыканием.

Формула напряжения

В физике есть формула, хотя практического применения она не имеет. Официальная формула записывается так.

A – это работа электрического поля по перемещению заряда по участку цепи, Джоули

U – напряжение на участке электрической цепи, Вольты

На практике напряжение на участке цепи выводится через закон Ома.

Напряжение тока – что это означает?

Этот термин очень часто можно услышать в разговорной речи. Ток, в данном случае, это электрический ток. Получается, напряжение тока – это напряжение электрического тока. Просто у нас так сокращают. Как я уже говорил выше, ток бывает переменным и постоянным. Постоянный ток и постоянное напряжение – это синонимы, как и переменный ток и переменное напряжение. Получается фраза “напряжение тока” говорит нам о том, какое напряжение между двумя точками или проводами в электрической цепи.

Например, на вопрос “какое напряжение тока в розетке” вы можете смело ответить: переменный ток 220 Вольт”, а на вопрос “какое напряжение тока тока у автомобильного аккумулятора”, вы можете ответить “12 Вольт постоянного тока”. Так что не стоит пугаться).

Постоянное и переменное напряжение

Напряжение бывает бывает постоянным и переменным. В разговорной речи часто можно услышать “постоянный ток” и “переменный ток. Постоянный ток и постоянное напряжение – это синонимы, то же что и переменный ток и переменное напряжение.

На примере выше мы с вами рассмотрели постоянное напряжение. То есть давление воды на дно башни в течение времени постоянно. Пока в башне есть вода, она оказывает давление на дно башни. Вроде бы все элементарно и просто. Но какое же напряжение называют переменным?

Все любят качаться на качелях:

Сначала вы летите в одном направлении, потом происходит торможение, а потом уже летите обратно спиной и весь процесс снова повторяется. Переменное напряжение ведёт себя точно так же. Сначала “электрическое давление” давит в одну сторону, потом происходит процесс торможения, потом оно давит в другую сторону, снова происходит торможение и весь процесс снова повторяется, как на качелях.

Тяжко для понимания? Тогда вот вам еще один пример из знаменитой книжки “Первые шаги в электронике” Шишкова. Берем замкнутую систему труб с водой и поршень. Поршень у нас находится в движении. Следовательно, молекулы воды у нас отклоняются то в одну сторону:

Читайте также:  При увеличении оборотов напряжение генератора падает

Так же ведут себя и электроны. В вашей домашней сети 220 В они колеблются 50 раз в секунду. Туда-сюда, туда-сюда. Столько-то колебаний в секунду называется Герцем. В литературе пишется просто “Гц”. Тогда получается, что колебание напряжения в наших розетках 50 Гц, а в Америке 60 Гц. Это связано со скоростью вращения генератора на электростанциях. В разговорной речи постоянное напряжение называют “постоянкой”, а переменное – “переменкой”.

Осциллограммы постоянного и переменного напряжения

Давайте рассмотрим, как выглядит переменное и постоянное напряжение на экране осциллографа. Как вы знаете, осциллограф показывает изменение напряжения во времени. Если на щуп осциллографа не подавать никакое напряжение, то на осциллограмме мы увидим простую прямую линию на нулевом уровне по оси Y. Ось Y – это значение напряжения, а ось Х – это время.

Давайте подадим постоянное напряжение. Как вы могли заметить, осциллограмма постоянного напряжения – это также прямая линия, параллельная оси времени. Это говорит нам о том, что с течением времени значение постоянного напряжение не меняется, о чем нам лишний раз доказывает осциллограмма.

А вот так выглядит осциллограмма переменного напряжения. Как вы видите, напряжение со временем меняет свое значение. То оно больше нуля, то оно меньше нуля.

Про параметры переменного напряжения можете прочитать в этой статье.

Также отличное объяснение темы можно посмотреть в этом видео.

Источник



Электрическое напряжение

Электри́ческое напряже́ние между точками A и B электрической цепи или электрического поля — физическая величина, значение которой равно отношению работы электрического поля, совершаемой при переносе пробного электрического заряда из точки A в точку B , к величине пробного заряда.

B>>.» border=»0″/>

При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля (по определению пробного заряда). В потенциальном электрическом поле эта работа не зависит от пути, по которому перемещается заряд. В этом случае электрическое напряжение U_<AB data-lazy-src=

Амплитудное значение напряжения

Амплитуда напряжения есть максимальное по модулю значение мгновенного напряжения за весь период колебаний:

U_M = \max(|u(t)|).

Для гармонических (синусоидальных) колебаний напряжения мгновенное значение напряжения выражается как:

u(t) = U_M \sin(\omega t + \phi).

Для сети переменного синусоидального напряжения со среднеквадратичным значением 220 В амплитудное равно приблизительно 311,127 В .

Амплитудное напряжение можно измерить с помощью осциллографа.

Среднее значение напряжения

Среднее значение напряжения (постоянная составляющая напряжения) определяется за весь период колебаний, как:

U_m=\frac<1 data-lazy-src=

На практике напряжение трёхфазной сети обозначают дробью, в знаменателе которой стоит линейное напряжение, а в числителе — фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли). Так, в России наиболее распространены сети с напряжением 220/380 В ; также иногда используются сети 127/220 В и 380/660 В .

Стандарты

Объект Тип напряжения Значение (на вводе потребителя) Значение (на выходе источника)
Электрокардиограмма Импульсное 1-2 мВ
Телевизионная антенна Переменное высокочастотное 1-100 мВ
Батарейка AA («пальчиковая») Постоянное 1,5 В
Литиевая батарейка Постоянное 3 В — 1,8 В (в исполнении пальчиковой батарейки , на примере Varta Professional Lithium, AA)
Управляющие сигналы компьютерных компонентов Импульсное 3,5 В, 5 В
Батарейка типа 6F22 («Крона») Постоянное 9 В
Силовое питание компьютерных компонентов Постоянное 12 В
Электрооборудование автомобиля Постоянное 12/24 В
Блок питания ноутбука и жидкокристаллических мониторов Постоянное 19 В
Сеть «безопасного» пониженного напряжения для работы в опасных условиях Переменное 36-42 В
Напряжение наиболее стабильного горения свечи Яблочкова Постоянное 55 В
Напряжение в телефонной линии (при опущенной трубке) Постоянное 60 В
Напряжение в электросети Японии Переменное трёхфазное 100/172 В
Напряжение в домашних электросетях США Переменное трёхфазное 120 В / 240 В (сплит-фаза)
Напряжение в электросети России Переменное трёхфазное 220/380 В 230/400 В
Разряд электрического ската Постоянное до 200—250 В
Контактная сеть трамвая и троллейбуса Постоянное 550 В 600 В
Разряд электрического угря Постоянное до 650 В
Контактная сеть метрополитена Постоянное 750 В 825 В
Контактная сеть электрифицированной железной дороги (Россия, постоянный ток) Постоянное 3 кВ 3,3 кВ
Распределительная воздушная линия электропередачи небольшой мощности Переменное трёхфазное 6-20 кВ 6,6-22 кВ
Генераторы электростанций, мощные электродвигатели Переменное трёхфазное 10-35 кВ
Анод кинескопа Постоянное 7-30 кВ
Статическое электричество Постоянное 1-100 кВ
Свеча зажигания автомобиля Импульсное 10-25 кВ
Контактная сеть электрифицированной железной дороги (Россия, переменный ток) Переменное 25 кВ 27,5 кВ
Пробой воздуха на расстоянии 1 см 10-20 кВ
Катушка Румкорфа Импульсное до 50 кВ
Пробой трансформаторного масла на расстоянии 1 см 100-200 кВ
Воздушная линия электропередачи большой мощности Переменное трёхфазное 35 кВ, 110 кВ, 220 кВ, 330 кВ 38 кВ, 120 кВ, 240 кВ, 360 кВ
Электрофорная машина Постоянное 50-500 кВ
Воздушная линия электропередачи сверхвысокого напряжения (межсистемные) Переменное трёхфазное 500 кВ, 750 кВ, 1150 кВ 545 кВ, 800 кВ, 1250 кВ
Трансформатор Тесла Импульсное высокочастотное до нескольких МВ
Генератор Ван де Граафа Постоянное до 7 МВ
Грозовое облако Постоянное От 2 до 10 ГВ

См. также

Ссылки

  • Электрическое напряжение — статья из Большой советской энциклопедии
  • Напряжение электрическое — статья из Физической энциклопедии
  • Про разность потенциалов, электродвижущую силу и напряжение
  • «Глоссарий.ру»: Cловарь по естественным наукам.

Wikimedia Foundation . 2010 .

Смотреть что такое «Электрическое напряжение» в других словарях:

ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ — между двумя точками электрической цепи или электрич. поля, равно работе электрич. поля по перемещению единичного положит. заряда из одной точки в другую. В потенц. электрич. поле (электростатическом поле) эта работа не зависит от пути, по к рому… … Физическая энциклопедия

ЭЛЕКТРИЧЕСКОЕ НАПРЯЖЕНИЕ — (2) … Большая политехническая энциклопедия

Электрическое напряжение — скалярная величина, равная линейному интегралу напряженности электрического поля вдоль рассматриваемого пути. Источник: ЭЛЕКТРОТЕХНИКА . ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ ОСНОВНЫХ ПОНЯТИЙ. ГОСТ Р 52002 2003 (утв. Постановлением Госстандарта РФ от… … Официальная терминология

электрическое напряжение — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN electric pressureelectric tension … Справочник технического переводчика

(электрическое) напряжение — 29 (электрическое) напряжение Скалярная величина, равная линейному интегралу напряженности электрического поля вдоль рассматриваемого пути. Примечание Электрическое напряжение Ul2вдоль рассматриваемого пути от точки 1 к точке 2 определяют по… … Словарь-справочник терминов нормативно-технической документации

электрическое напряжение — elektrinė įtampa statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. electric tension; tension; voltage vok. elektrische Spannung, f; Spannung, f rus. напряжение, n;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

Электрическое напряжение — 26. Электрическое напряжение Напряжение Скалярная величина, равная линейному интегралу напряженности электрического поля Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал документа … Словарь-справочник терминов нормативно-технической документации

электрическое напряжение — elektrinė įtampa statusas T sritis automatika atitikmenys: angl. electric tension; electric voltage vok. elektrische Spannung, f rus. электрическое напряжение, n pranc. tension électrique, f … Automatikos terminų žodynas

электрическое напряжение — elektrinė įtampa statusas T sritis chemija apibrėžtis Potencialų skirtumas tarp dviejų elektrinio lauko taškų. atitikmenys: angl. electric tension; electric voltage; voltage rus. электрическое напряжение … Chemijos terminų aiškinamasis žodynas

электрическое напряжение — elektrinė įtampa statusas T sritis fizika atitikmenys: angl. electric voltage vok. elektrische Spannung, f rus. электрическое напряжение, n pranc. tension électrique, f … Fizikos terminų žodynas

Источник