Меню

Асинхронная машина при неподвижном роторе индукционный регулятор

Асинхронные машины с неподвижным ротором

Фазорегулятор(рис. 29-11 а) представляет собой асинхронную машину с фазным ротором, ротор которой заторможен и может быть вручную или с помощью вспомогательного (исполнительного) двигателя повернут относительно статора на 360° эл. Торможение и поворот ротора осуществляется обычно с помощью самотормозящейся червячной передачи. Первичная сторона фазорегулятора присоединяется к сети, а вторичная — к нагрузке (сопротивления ZHT на рис. 29-1, а).

Обозначим рэлектрический угол поворота оси фазы обмотки ротора относительно оси фазы обмотки статора (рис. 29-1, а). Если принять для простоты, что у рассматриваемой асинхронной машины гх = г2 = хл = хт = 0, то Ux Ег и £/2 = Е2 и диаграмма напряжений фазорегулятора имеет вид,, показанный на рис. 29-1, б. Э. д. с. Ei и £2 индуктируются общим вращающимся полем и сдвинуты в соответствующих фазах статора и ротора относительно друг друга на угол р\ При повороте ротора и изменении угла (J вектор Ёг — 0% поворачивается относительно векторов Ё\ и Ох-

Фазорегулятор представляет собой в сущности поворотный трансформатор

с регулируемой фазой вторичного напряжения относительно первичного. Фазорегуляторы находят применение главным образом в лабораториях, в частности, при испытании счетчиков электрической энергии и других приборов и аппаратов.

Необходимо иметь в виду, что на ротор фазорегулятора, когда од нагружен, действует вращающий момент. Это же относится и к другим рассматриваемым ниже машинам с заторможенным ротором.

Трехфазный индукционный регуляторслужит для регулирования напряжения трехфазной сети переменного тока. Обмотки регуля-

Рис. 29-1. Схема (а) и векторная диаграмма напряжений (б) фазорегулятора

тора включаются по схеме автотрансформатора, и регулятор представляет собой в сущности поворотный автотрансформатор.

Схема соединений обмоток наиболее широко применяемого трехфазного индукционного регулятора представлена на рис. 29-2, а. Одна из обмоток (wt) является первичной и включается параллельно в сеть первичного напряжения Ult а вторичная обмотка (ш2) включается в эту сеть последовательно. В качестве первичной обмотки обычно используют обмотку ротора, так как при этом необходимо вывести с помощью контактных колец и щеток или гибких

Рис. 2&-2. Схема соединений обмоток (а) и векторная

диаграмма напряжений (б) трехфазного индукционного

проводников только три конца обмотки. Первичная обмотка может быть включена как в звезду, так и в треугольник. Ниже для ясности будем иметь в виду соединение в звезду.

Первичная обмотка потребляет из первичной сети намагничивающий ток, который создает вращающийся поток Ф. Если пренебречь падениями напряжения, то этот поток индуктирует в обмотках э. д. с. Ех — £4 и

Э. д. с. Еъ складывается с напряжением Ut под углом р (рис. 29-2, б), равным электрическому углу поворота фазы вторичной обмотки относительно первичной. При изменении р* концы векторов Ё% и Ог ири &х = const скользят по окружности. Предельные значения вторичного напряжения при пренебрежении падениями напряжения будут: при <5 = 180°

Читайте также:  Регулятор нагрева электроплиты мечта

При равенстве чисел витков обмоток статора и ротора

У регулятора (рис. 29-2) одновременно с изменением величины напряжения U2 меняется также его фаза, что иногда нежелательно. В таких случаях можно применить сдвоенный индукционный регулятор (рис. 29-3), у которого первичные обмотки присоединены к первичной сети параллельно, а вторичные — последовательно

Рис 29-3 Схема соединений обмоток (а) и векторная диаграмма напряжений (б) сдвоенного трехфазного индукционного регулятора

друг с другом. Оба регулятора укреплены на общем валу, и у второго регулятора на первичной и вторичной сторонах присоединения к двум фазам переменены местами. Вследствие этого магнитные поля двух регуляторов вращаются в противоположные стороны, и при повороте ротора одного регулятора по направлению вращения поля ротор другого поворачивается против направления вращения поля. Векторы вторичных э. д. с. регуляторов Е’% и Ё’% на векторной диаграмме (рис. 29-3, 6) поворачиваются поэтому в противоположных направлениях, и при неучете падения напряжения фаза вторичного напряжения

остается неизменной. Вращающий момент на валу сдвоенного регулятора равен нулю. Недостатком сдвоенного регулятора является наличие двух машин, что приводит к удорожанию установки. Не изменяющееся по фазе вторичное напряжение можно получить также в индукционном регуляторе с соединением фаз обмоток

статора (с) и ротора (р) в общий треугольник (рис. 29-4), если числа витков статора и ротора одинаковы. Первичное напряжение Ux = = const в таком регуляторе подводится к вершинам треугольника ABC, а вторичное U% = var отводится от средних точек а, Ь, с сторон этого треугольника (рис. 29-4).

Векторные диаграммы напряжений регулятора, изображенного на рис. 29-4, можно построить, учитывая, что э. д. с. фаз статора Ес и ротора £р одного и того же плеча треугольника при аУс^об. с = йУр&об. р равны по величине, сдвинуты по фазе на угол р поворота ротора относительно статора и в сумме равны приложенному фазному напряжению:

На рис. 29-5, а, б я в показаны вектор- l^\^ZZl ные диаграммы регулятора, выполненного по го регулятора с соеди-схеме рис. 29-4, соответственно для случаев нением обмоток стато-Р = 0, р>0 и р или £с = Ер положение этого треугольника и, следовательно, фаза вторичного напряжения не изменяются.

Отметим, что при отсутствии нагрузки на вторичной стороне регулятор, изображенный на рис. 29-4, по своим свойствам представляет собой регулируемую трехфазную реактивную катушку.

В индукционных регуляторах, как й в автотрансформаторах, нужно различать внешнюю, или проходную, и внутреннюю, или габаритную, мощности (см. § 18-2). Соотношения между этими мощностями в индукционных регуляторах и автотрансформаторах яри одинаковых схемах соединений обмоток и одинаковых соотношениях чисел витков одинаковы (для схемы рис. 29-2, а при § = — 180° и для схемы рис. 29-4 при р*= 0).

Читайте также:  Средство кодирования опыта средство общения регулятор поведения это

Последнее изменение этой страницы: 2017-03-17; Просмотров: 776; Нарушение авторского права страницы

Источник

Асинхронный двигатель при неподвижном роторе

Асинхронный двигатель при неподвижном роторе Асинхронный двигатель при неподвижном роторе Асинхронный двигатель при неподвижном роторе Асинхронный двигатель при неподвижном роторе Это изображение имеет пустой атрибут alt; его имя файла - image-10-1.png

Асинхронный двигатель при неподвижном роторе

Асинхронный двигатель при неподвижном роторе. Между обмоткой статора и обмоткой Ротора асинхронной машины, как и у трансформатора между первичной обмоткой и вторичной обмоткой, имеется только магнитная связь. Электромагнитный процесс асинхронной машины подобен процессу, который происходит в трансформаторе. Такое сходство особенно заметно в режиме работы асинхронных машин со стационарными роторами, которые конструктивно отличаются только от трансформаторов обычной конструкции (наличие воздушных зазоров, распределенных обмоток статора и ротора и т. д.). В этом случае возможны 2 крайних режима работы-холостой ход и короткое замыкание. ( / , и частотой).

  • В этом случае асинхронная машина представляет собой холостой трансформатор. Обмотка статора является первичной обмоткой, а обмотка Ротора-вторичной обмоткой. <Под действием Y ток разомкнутой цепи / ® протекает через каждую фазу статора winding. It воспитывается им. И Po создает поток, часть которого Ф (основной поток) объединяется в обе обмотки, а другая thep (рассеивающий поток) объединяется только в обмотки статора (рис.7).!это не. Главный Магнитный поток Φ, вращающийся со скоростью n0= -, индуцируется в обмотках статора и ротора e. d. S. равны, соответственно: (7.1) (7.2) ^ 1 = 4. 44b01yy1 ^ fm; ^ 2 = 4.44&2a1 / 1Fm、 Где yes и yes2-число витков последовательно по 1 фазе обмоток статора и ротора. ko и & o2-коэффициенты намотки обмоток статора и ротора.

Fm-максимум основного потока. Рассеянный поток Ф / М индуцируется в обмотке статора e. d. s Разброс-где x1 =2π^ p1-индукция 1 сопротивление рассеяния фазы обмотки статора. Рисунок 7.1.Статор течет с открытым ротором. Напишите уравнение напряжения для обмотки статора и первичной обмотки трансформатора 0 \ = E \ (rxK -\ -] X \ 1o = (7.3) Где r \ u-активное сопротивление и полное сопротивление фазы обмотки статора. Согласно формуле (7.3), падение напряжения n! Только значения O и / lg1 / 0 могут построить векторную диаграмму, которая отличается от диаграммы холостого хода трансформатора.

  • Они обусловлены относительно высокими значениями открытого тока и тем, что асинхронная машина больше трансформатора. Относительно большое сопротивление n и X1.Ток разомкнутой цепи асинхронной машины из-за наличия пустот составляет 25-50% от I\. Коэффициент преобразования Э. Д. С. асинхронная машина _ & 01 & h Например, kochfg Только коэффициент коэффициента обмотки отличается от коэффициента давления трансформатора. В режиме холостого хода машины (n-0), помимо потерь статора и ротора из стали pc1_ | _pc2>и потери статора из меди rt1a2gi, t1 следует учитывать количество фаз обмотки статора. Покрытие представляет собой мощность P (b, потребляемую машиной от сети.

Подобный этому (7.5) Po-c1 \ P Людмила Фирмаль

  • Данная обмотка Ротора означает обмотку с тем же числом фаз и витков, что и обмотка статора, и тем же коэффициентом намотки. 0.45 / P1/ 1 —-= 0.45 // 22 / g П K0 gt П В случае короткого замыкания асинхронного двигателя n пренебрежимо мало. А основной поток Φ мал из-за ПО и тока/ о. тогда, согласно закону равновесия, n. а статор и Ротор равны, то есть Или (7.6) = / П2Л0g / oi’RW2 ^ O2 ^ 2 Один (7.7) Отсюда Т, Л01ю1 А и Где k * = текущий коэффициент пересчета. tfogHyug T2-число фаз обмотки ротора. Согласно формуле (7.4), например, приведенными обмотками Ротора являются E2 ’= kEE2 = E <. (7.8) )=Г2кЕк1 = г2к. (7.9)) r2 ′ определяет и начинает с равенства m2 / 22r2 = m1 / 2/2r2/. Здесь к=кккх-коэффициент уменьшения сопротивления. hg ГГ ХД ’ гг $ при определении x
Читайте также:  Cir lok регуляторы давления

Помощь студентам в учёбе
Помощь студентам в учёбе
Помощь студентам в учёбе

Помощь студентам в учёбе

Изучу , оценю , оплатите , через 2-3 дня всё будет на «4» или «5» !

Откройте сайт на смартфоне, нажмите на кнопку «написать в чат» и чат в whatsapp запустится автоматически.

Помощь студентам в учёбе

Помощь студентам в учёбеf9219603113@gmail.com


Помощь студентам в учёбе

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник



Асинхронной машине при неподвижном роторе

Электромагнитные процессы в трехфазной

МДС катушечной группы и фазной обмотки при укороченном шаге

Уравнения пульсирующих и бегущих волн

МДС обмоток переменного тока.

МДС фазы обмотки состоит из МДС отдельных катушек, соединенных в катушечные группы, которые образуют фазную обмотку. МДС отдельной катушки с диаметральным шагом на основании закона полного тока

Прямоугольная волна МДС катушки на основании разложения Фурье

представляет собой сумму пульсирующих с частотой тока волн всех нечетных гармоник МДС, где:

МДС трехфазной обмоткиравна сумме трех фазных МДС

Частота их вращения

Рассматриваются процессы в асинхронной машине:

· при неподвижном роторе,

· при вращающемся роторе,

· вращающие моменты и мощности,

· механические и рабочие характеристики.

При неподвижном роторе асинхронная машина является трансформатором

· с вращающимся (а не пульсирующим) магнитным потоком,

· с магнитной системой, содержащей воздушный зазор,

· с распределенными (а не сосредоточенными) обмотками статора и ротора,

· с различными числами фаз статора и ротора.

Схема замещения, векторная диаграмма и уравнения напряжений и токов не отличаются от обычного трансформатора

ЭДС обмоток, соответственно, равны

Коэффициент трансформации по ЭДС и приведенная ЭДС ротора

Ток холостого хода и напряжение короткого замыкания такого трансформатора

Уравнения МДС и токов с учетом коэффициента трансформации по току

Приведенные сопротивления ротора

Основные режимы работы асинхронного двигателя при неподвижном заторможенном роторе:

· Сдвоенный индукционный регулятор,

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник